Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-540-70575-8_36guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Dynamic Normal Forms and Dynamic Characteristic Polynomial

Published: 07 July 2008 Publication History

Abstract

We present the first fully dynamic algorithm for computing thecharacteristic polynomial of a matrix. In the generic symmetriccase our algorithm supports rank-one updates inO(n2logn) randomized timeand queries in constant time, whereas in the general case thealgorithm works in O(n2klogn) randomized time, where kis the number ofinvariant factors of the matrix. The algorithm is based on thefirst dynamic algorithm for computing normal forms of a matrix suchas the Frobenius normal form or the tridiagonal symmetric form. Thealgorithm can be extended to solve the matrix eigenproblem withrelative error 2-bin additionalO(nlog2nlogb)time. Furthermore, it can be used to dynamically maintain thesingular value decomposition (SVD) of a generic matrix. Togetherwith the algorithm the hardness of the problem is studied. For thesymmetric case we present an Ω(n2) lower bound for rank-one updates and anΩ(n) lower bound for element updates.

References

[1]
Giesbrecht, M.: Nearly optimal algorithms for canonical matrix forms. SIAM Journal on Computing 24(5), 948-969 (1995)
[2]
Eberly, W.: Asymptotically efficient algorithms for the Frobenius form. Paper 723- 26, Department of Computer Science, University of Calgary (2003)
[3]
Villard, G.: Computing the Frobenius normal form of a sparse matrix. In: The Third International Workshop on Computer Algebra in Scientific Computing, pp. 395-407. Springer, Heidelberg (2000)
[4]
Storjohann, A.: Deterministic computation of the frobenius form. In: FOCS, pp. 368-377 (2001)
[5]
Ben-Amram, A., Galil, Z.: On pointers versus addresses. J. Assoc. Comput. Mach. 39, 617-648 (1992)
[6]
Pan, V., Chen, Z.: The complexity of the matrix eigenproblem. In: STOC 1999: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 507-516. ACM Press, New York (1999)
[7]
Frandsen, G., Hansen, J., Miltersen, P.: Lower bounds for dynamic algebraic problems. Inform. and Comput. 171(2), 333-349 (2001)
[8]
Frandsen, P., Frandsen, G.: Dynamic matrix rank. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 395-406. Springer, Berlin (2006)
[9]
Sankowski, P.: Dynamic Transitive Closure via Dynamic Matrix Inverse. In: FOCS, pp. 509-517 (2004)
[10]
Ibarra, O., Moran, S., Rosier, L.: A note on the parallel complexity of computing the rank of order n matrices. Inform. Process. Lett. 11(4-5), 162 (1980)
[11]
Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. In: STOC, pp. 338-339. ACM Press, New York (1986)
[12]
Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society (1997)
[13]
Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, New York, NY, USA, pp. 310-324 (1982)
[14]
Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23(98), 289-305 (1973)
[15]
Spielman, D., Teng, S.H.: Spectral partitioning works: Planar graphs and finite element meshes. In: FOCS, pp. 96-105 (1996)
[16]
Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: ICCV (2), pp. 975-982 (1999)
[17]
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Proceedings of Advances in Neural Information Processing Systems 14 (2001)
[18]
Meyer, C.D., J.S.: Updating finite markov chains by using techniques of group matrix inversion. J. Statist. Comput. Simulat. 11, 163-181 (1980)
[19]
Funderlic, R.E., Plemmons, R.J.: Updating lu factorizations for computing stationary distributions. SIAM J. Algebraic Discrete Methods 7(1), 30-42 (1986)
[20]
Seneta, E.: Sensivity analysis, ergodicity coefficients, and rank-one updates for finite markov chains. Numerical Solutions of Markov Chains, 121-129 (1991)
[21]
Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36-61 (1991), http://www.ams.org/mathscinet-getitem?mr=92h:60103
[22]
Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)
[23]
Chandrasekaran, S., Manjunath, B.S., Wang, Y.F., Winkeler, J., Zhang, H.: An eigenspace update algorithm for image analysis. Graph. Models Image Process 59(5), 321-332 (1997)
[24]
Kanth, K., Agrawal, D., Singh, A.: Dimensionality reduction for similarity searching in dynamic databases. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, NY, USA, pp. 166-176 (1998)
[25]
Brand, M.: Fast online svd revisions for lightweight recommender systems. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia (2003)
[26]
Gu, M., Eisenstat, S.C.: A stable and fast algorithm for updating singular value decomposition. Technical Report YALE/DCS/TR-966, Yale University, New Haven, CT (1993)
[27]
Gu, M., Eisenstat, S.: Downdating the singular value decomposition. SIAM Journal on Matrix Analysis and Applications 16(3), 793-810 (1995)
[28]
Frandsen, G.S., Sankowski, P.: Dynamic normal forms and dynamic characteristic polynomial. Research Series RS-08-2, BRICS, Department of Computer Science, University of Aarhus (2008), http://www.brics.dk/RS/08/2/index.html
[29]
Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic complexity theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315. Springer, Berlin (1997)
[30]
Bini, D., Pan, V.: Polynomial and Matrix Computations. Birkhäuser (1994)
[31]
Eberly, W., Kaltofen, E.: On randomized lanczos algorithms. In: ISSAC 1997: Proceedings of the 1997 international symposium on Symbolic and algebraic computation, pp. 176-183. ACM Press, New York (1997)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICALP '08: Proceedings of the 35th international colloquium on Automata, Languages and Programming - Volume Part I
July 2008
892 pages
ISBN:3540705740
  • Editors:
  • Luca Aceto,
  • Ivan Damgård,
  • Leslie Ann Goldberg,
  • Magnús M. Halldórsson,
  • Anna Ingólfsdóttir,
  • Igor Walukiewicz

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 July 2008

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media