Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-540-85174-5_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Programmable Hash Functions and Their Applications

Published: 17 August 2008 Publication History

Abstract

We introduce a new information-theoretic primitive called <em>programmable hash functions</em>(PHFs). PHFs can be used to <em>program</em>the output of a hash function such that it contains solved or unsolved discrete logarithm instances with a certain probability. This is a technique originally used for security proofs in the random oracle model. We give a variety of <em>standard model</em>realizations of PHFs (with different parameters).
The programmability of PHFs make them a suitable tool to obtain black-box proofs of cryptographic protocols when considering adaptive attacks. We propose generic digital signature schemes from the strong RSA problem and from some hardness assumption on bilinear maps that can be instantiated with any PHF. Our schemes offer various improvements over known constructions. In particular, for a reasonable choice of parameters, we obtain short standard model digital signatures over bilinear maps.

References

[1]
Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233. Springer, Heidelberg (1997)
[2]
Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216-233. Springer, Heidelberg (1994)
[3]
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, November 3-5, 1993, pp. 62-73. ACM Press, New York (1993)
[4]
Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399-416. Springer, Heidelberg (1996)
[5]
Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)
[6]
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer, Heidelberg (2004)
[7]
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149-177 (2008)
[8]
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514-532. Springer, Heidelberg (2001)
[9]
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297-319 (2004)
[10]
Boyen, X.: General ad hoc encryption from exponent inversion IBE. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394-411. Springer, Heidelberg (2007)
[11]
Brands, S.: An efficient off-line electronic cash system based on the representation problem. Report CS-R9323, Centrum voor Wiskunde en Informatica (March 1993)
[12]
Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268-289. Springer, Heidelberg (2003)
[13]
Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127-141. Springer, Heidelberg (1988)
[14]
Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470-484. Springer, Heidelberg (1992)
[15]
Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339-356. Springer, Heidelberg (2006)
[16]
Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229-235. Springer, Heidelberg (2000)
[17]
Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM CCS 1999, Kent Ridge Digital Labs, Singapore, November 1-4, 1999, pp. 46-51. ACM Press, New York (1999)
[18]
Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449-466. Springer, Heidelberg (2005)
[19]
Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116-129. Springer, Heidelberg (2002)
[20]
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16-30. Springer, Heidelberg (1997)
[21]
Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123- 139. Springer, Heidelberg (1999)
[22]
Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Heidelberg (2006)
[23]
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281-308 (1988)
[24]
Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan (January 2000)
[25]
Waters, B.R.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer, Heidelberg (2005)
[26]
Zhu, H.: New digital signature scheme attaining immunity to adaptive chosenmessage attack. Chinese Journal of Electronics 10(4), 484-486 (2001)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CRYPTO 2008: Proceedings of the 28th Annual conference on Cryptology: Advances in Cryptology
August 2008
591 pages
ISBN:9783540851738

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 17 August 2008

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Tighter Adaptive IBEs and VRFs: Revisiting Waters’ Artificial AbortTheory of Cryptography10.1007/978-3-031-78020-2_5(124-155)Online publication date: 2-Dec-2024
  • (2023)The Power of Undirected Rewindings for Adaptive SecurityAdvances in Cryptology – CRYPTO 202310.1007/978-3-031-38545-2_24(725-758)Online publication date: 20-Aug-2023
  • (2023)Adaptively Secure Identity-Based Encryption from Middle-Product Learning with ErrorsInformation Security and Privacy10.1007/978-3-031-35486-1_15(320-340)Online publication date: 5-Jul-2023
  • (2022)Double-authentication-preventing signatures in the standard modelJournal of Computer Security10.3233/JCS-20011730:1(3-38)Online publication date: 1-Jan-2022
  • (2021)Identity-based Multi-Recipient Public Key Encryption Scheme and Its Application in IoTMobile Networks and Applications10.1007/s11036-019-01490-626:4(1543-1550)Online publication date: 1-Aug-2021
  • (2021)On the Impossibility of Purely Algebraic SignaturesTheory of Cryptography10.1007/978-3-030-90456-2_11(317-349)Online publication date: 8-Nov-2021
  • (2021)Efficient Adaptively-Secure IB-KEMs and VRFs via Near-Collision ResistancePublic-Key Cryptography – PKC 202110.1007/978-3-030-75245-3_22(596-626)Online publication date: 10-May-2021
  • (2020)Signatures with Tight Multi-user Security from Search AssumptionsComputer Security – ESORICS 202010.1007/978-3-030-59013-0_24(485-504)Online publication date: 14-Sep-2020
  • (2020)The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iOPublic-Key Cryptography – PKC 202010.1007/978-3-030-45374-9_7(187-219)Online publication date: 4-May-2020
  • (2019)Multi-Client Functional Encryption for Linear Functions in the Standard Model from LWEAdvances in Cryptology – ASIACRYPT 201910.1007/978-3-030-34618-8_18(520-551)Online publication date: 8-Dec-2019
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media