Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-02481-8_75guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Design of a Snort-Based Hybrid Intrusion Detection System

Published: 06 June 2009 Publication History

Abstract

Computer security has become a major problem in our society. In particular, computer network security is concerned with preventing the intrusion of an unauthorized person into a network of computers. An intrusion detection system (IDS) is a tool to monitor the network traffic and users' activity with the aim of distinguishing between hostile and non-hostile traffic. Snort is an IDS available under GPL, which allows pattern search. This paper presents a new anomaly pre-processor that extends the functionality of Snort IDS, making it a hybrid IDS.

References

[1]
Bace, R., Mell, P.: NIST Special Publication on Intrusion Detection Systems (2004), http://www.21cfrpart11.com/files/library/reg_guid_docs/ nist_intrusiondetectionsys.pdf
[2]
Baker, A., Beale, J., Caswell, B., Poore, M.: Snort 2.1 Intrusion Detection, 2nd edn. (2004), http://www.snort.org/
[3]
Ranum, M., Landfield, K., Stolarchuk, M., Sienkiewicz, M., Lambeth, A., Wall, E.: Implementing a generalized tool for network monitoring. In: Proceedings of the Eleventh Systems Administration Conference (LISA 1997), San Diego (1997).
[4]
Heberlein, L.T.: Network Security Monitor (NSM) - Final Report. Lawrence Livermore National Laboratory, Davis, CA (1995).
[5]
Lawrence Livermore National Laboratory: Network Intrusion Detector (NID) Overview. Computer Security Technology Center (1998).
[6]
Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineering 13(2), 222-232 (1987).
[7]
Ye, N., Emran, S.M., Li, X., Chen, Q.: Statistical process control for computer intrusion detection. In: DARPA Information Survivability Conference & Exposition II, DISCEX 2001 (2001).
[8]
Barbara, D., Wu, N., Jajodia, S.: Detecting novel network intrusions using Bayes estimators. In: Proceedings of First SIAM Conference on Data Mining, Chicago, IL (2001).
[9]
Díaz-Verdejo, J.E., García-Teodoro, P., Muñoz, P., Maciá-Fernández, G., De Toro, F.: Una aproximación basada en Snort para el desarrollo e implantación de IDS híbridos (A Snort-based approach for the development and deployment of hybrid IDS). IEEE Latin America Transactions 5(6), 386-392 (2007).
[10]
Hwang, K., Cai, M., Chen, Y., Qin, M.: Hybrid Intrusion Detection with Weighted Signature Generation Over Anomalous Internet Episodes. IEEE Transactions on Dependable and Secure Computing 4(1), 41-55 (2007).
[11]
Wuu, L.C., Hung, C.H., Chen, S.F.: Building intrusión pattern miner for Snort network intrusión detection system. Journal of Systems and Software 80(10), 1699-1715 (2007).
[12]
Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection. Secure Networks, Inc. (1998).
[13]
Intrusion Detection Evaluation Data Sets. DARPA (2002), http://www.ll.mit.edu/mission/communications/ist/corpora/ ideval/index.html

Cited By

View all
  • (2022)Bridging the Last-Mile Gap in Network Security via Generating Intrusion-Specific Detection Patterns through Machine LearningSecurity and Communication Networks10.1155/2022/39903862022Online publication date: 1-Jan-2022
  • (2011)A multi-objective evolutionary algorithm for network intrusion detection systemsProceedings of the 11th international conference on Artificial neural networks conference on Advances in computational intelligence - Volume Part I10.5555/2023252.2023264(73-80)Online publication date: 8-Jun-2011
  • (2010)Relational network-service clustering analysis with set evidencesProceedings of the 3rd ACM workshop on Artificial intelligence and security10.1145/1866423.1866432(35-44)Online publication date: 8-Oct-2010

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IWANN '09: Proceedings of the 10th International Work-Conference on Artificial Neural Networks: Part II: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
June 2009
1291 pages
ISBN:9783642024801
  • Editors:
  • Sigeru Omatu,
  • Miguel P. Rocha,
  • José Bravo,
  • Florentino Fernández,
  • Emilio Corchado,
  • Andrés Bustillo,
  • Juan M. Corchado

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 June 2009

Author Tags

  1. Intrusion detection systems
  2. Network IDS
  3. Snort
  4. anomaly detection

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Bridging the Last-Mile Gap in Network Security via Generating Intrusion-Specific Detection Patterns through Machine LearningSecurity and Communication Networks10.1155/2022/39903862022Online publication date: 1-Jan-2022
  • (2011)A multi-objective evolutionary algorithm for network intrusion detection systemsProceedings of the 11th international conference on Artificial neural networks conference on Advances in computational intelligence - Volume Part I10.5555/2023252.2023264(73-80)Online publication date: 8-Jun-2011
  • (2010)Relational network-service clustering analysis with set evidencesProceedings of the 3rd ACM workshop on Artificial intelligence and security10.1145/1866423.1866432(35-44)Online publication date: 8-Oct-2010

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media