Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-02658-4_14guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Better Quality in Synthesis through Quantitative Objectives

Published: 23 June 2009 Publication History

Abstract

Most specification languages express only qualitative constraints. However, among two implementations that satisfy a given specification, one may be preferred to another. For example, if a specification asks that every request is followed by a response, one may prefer an implementation that generates responses quickly but does not generate unnecessary responses. We use quantitative properties to measure the "goodness" of an implementation. Using games with corresponding quantitative objectives, we can synthesize "optimal" implementations, which are preferred among the set of possible implementations that satisfy a given specification.
In particular, we show how automata with lexicographic mean-payoff conditions can be used to express many interesting quantitative properties for reactive systems. In this framework, the synthesis of optimal implementations requires the solution of lexicographic mean-payoff games (for safety requirements), and the solution of games with both lexicographic mean-payoff and parity objectives (for liveness requirements). We present algorithms for solving both kinds of novel graph games.

References

[1]
Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters (1985).
[2]
Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333-347. Springer, Heidelberg (2009).
[3]
Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theor. Comput. Sci. (2004).
[4]
Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmannn, B.: Better quality in synthesis through quantitative objectives. CoRR, abs/0904.2638 (2009).
[5]
Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.: Verifying quantitative properties using bound functions. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 50-64. Springer, Heidelberg (2005).
[6]
Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117-133. Springer, Heidelberg (2003).
[7]
Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Compositional quantitative reasoning. In: QEST, pp. 179-188. IEEE Computer Society Press, Los Alamitos (2006).
[8]
Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385-400. Springer, Heidelberg (2008).
[9]
Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Annual Symposium on Logic in Computer Science (LICS) (2005).
[10]
Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. In: LICS 2004, pp. 160-169. IEEE, Los Alamitos (2004).
[11]
de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: LICS 1998, pp. 454-465. IEEE Computer Society Press, Los Alamitos (1998).
[12]
de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J.,Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003).
[13]
de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: LICS, pp. 99-108. IEEE Computer Society Press, Los Alamitos (2007).
[14]
Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258-273. Springer, Heidelberg (1999).
[15]
Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Science 380, 69-86 (2007).
[16]
Droste, M., Kuich,W., Rahonis, G.: Multi-valued MSO logics over words and trees. Fundamenta Informaticae 84, 305-327 (2008).
[17]
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory (1979).
[18]
Karp, R.M.: A characterization of the minimum cycle mean of a digraph. Discrete Mathematics (1978).
[19]
King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, p. 276. Springer, Heidelberg (2001).
[20]
Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199-213. Springer, Heidelberg (2007).
[21]
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science (1996).

Cited By

View all
  • (2024)Stochastic games with lexicographic objectivesFormal Methods in System Design10.1007/s10703-023-00411-463:1-3(40-80)Online publication date: 1-Oct-2024
  • (2023)Principal-agent Boolean gamesProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/17(144-152)Online publication date: 19-Aug-2023
  • (2023)Multi-objective ω-Regular Reinforcement LearningFormal Aspects of Computing10.1145/360595035:2(1-24)Online publication date: 18-Jul-2023
  • Show More Cited By
  1. Better Quality in Synthesis through Quantitative Objectives

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CAV '09: Proceedings of the 21st International Conference on Computer Aided Verification
    June 2009
    720 pages
    ISBN:9783642026577
    • Editors:
    • Ahmed Bouajjani,
    • Oded Maler

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 23 June 2009

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Stochastic games with lexicographic objectivesFormal Methods in System Design10.1007/s10703-023-00411-463:1-3(40-80)Online publication date: 1-Oct-2024
    • (2023)Principal-agent Boolean gamesProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/17(144-152)Online publication date: 19-Aug-2023
    • (2023)Multi-objective ω-Regular Reinforcement LearningFormal Aspects of Computing10.1145/360595035:2(1-24)Online publication date: 18-Jul-2023
    • (2023)Compositional High-Quality SynthesisAutomated Technology for Verification and Analysis10.1007/978-3-031-45329-8_16(334-354)Online publication date: 24-Oct-2023
    • (2022)Robustness-by-Construction Synthesis: Adapting to the Environment at RuntimeLeveraging Applications of Formal Methods, Verification and Validation. Verification Principles10.1007/978-3-031-19849-6_10(149-173)Online publication date: 22-Oct-2022
    • (2021)Shielding Atari Games with Bounded PrescienceProceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems10.5555/3463952.3464141(1507-1509)Online publication date: 3-May-2021
    • (2021)Quantitative and approximate monitoringProceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science10.1109/LICS52264.2021.9470547(1-14)Online publication date: 29-Jun-2021
    • (2021)A Weakness Measure for GR(1) FormulaeFormal Aspects of Computing10.1007/s00165-020-00519-y33:1(27-63)Online publication date: 1-Jan-2021
    • (2021)Quantitative vs. Weighted AutomataReachability Problems10.1007/978-3-030-89716-1_1(3-18)Online publication date: 25-Oct-2021
    • (2020)Learning quantitative representation synthesisProceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning and Programming Languages10.1145/3394450.3397467(29-37)Online publication date: 15-Jun-2020
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media