Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-02930-1_18guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Diagrammatic Confluence and Completion

Published: 03 July 2009 Publication History

Abstract

We give a new elegant proof that decreasing diagrams imply confluence based on a proof reduction technique, which is then the basis of a novel completion method which proof-reduction relation transforms arbitrary proofs into rewrite proofs even in presence of non-terminating reductions. Unlike previous methods, no ordering of the set of terms is required, but can be used if available. Unlike ordered completion, rewrite proofs are closed under instantiation. Examples are presented, including Kleene's and Huet's classical examples showing that non-terminating local-confluent relations may not be confluent.

References

[1]
Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Proc. 1st IEEE Symp. Logic in Computer Science, Camb., Mass., June 1986, pp. 346-357 (1986).
[2]
Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Kaci, A.H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. 2, pp. 1-30. Academic Press, New York (1989).
[3]
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243-309. North-Holland, Amsterdam (1990).
[4]
Klop, J.W., et al.: Term rewriting systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003).
[5]
Hsiang, J., Rusinowitch, M.: On word problems in equational theories. In: 14th International Colloquium on Automata, languages and programming, London, UK, pp. 54-71. Springer, London (1987).
[6]
Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. Journal of the ACM 27(4), 797-821 (1980).
[7]
Huet, G.: A complete proof of correctness of the Knuth-Bendix completion algorithm. Journal of Computer and System Sciences 23, 11-21 (1981).
[8]
Jouannaud, J.-P.: Church-Rosser properties of normal rewriting, draft (2009).
[9]
Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM Journal on Computing 15(4), 1155-1194 (1986).
[10]
Newman, M.H.A.: On theories with a combinatorial definition of 'equivalence'. Ann. Math. 43(2), 223-243 (1942).
[11]
Barry, K.R.: Tree-manipulating systems and Church-Rosser theorems. J. of the Association for Computing Machinery 20(1), 160-187 (1973).
[12]
van Oostrom, V.: Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Amsterdam (1994).
[13]
van Oostrom, V.: Confluence by decreasing diagrams. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 306-320. Springer, Heidelberg (2008).

Cited By

View all
  • (2010)Decreasing diagrams and relative terminationProceedings of the 5th international conference on Automated Reasoning10.1007/978-3-642-14203-1_41(487-501)Online publication date: 16-Jul-2010

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICALP '09: Proceedings of the 36th Internatilonal Collogquium on Automata, Languages and Programming: Part II
July 2009
594 pages
ISBN:9783642029295
  • Co-chair:
  • Yossi Matias,
  • Editors:
  • Susanne Albers,
  • Alberto Marchetti-Spaccamela,
  • Sotiris Nikoletseas,
  • Wolfgang Thomas

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 July 2009

Author Tags

  1. completion
  2. confluence
  3. decreasing diagrams
  4. rewriting

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2010)Decreasing diagrams and relative terminationProceedings of the 5th international conference on Automated Reasoning10.1007/978-3-642-14203-1_41(487-501)Online publication date: 16-Jul-2010

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media