Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-05224-8_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Averaged Naive Bayes Trees: A New Extension of AODE

Published: 03 November 2009 Publication History

Abstract

Naive Bayes (NB) is a simple Bayesian classifier that assumes the conditional independence and augmented NB (ANB) models are extensions of NB by relaxing the independence assumption. The averaged one-dependence estimators (AODE) is a classifier that averages ODEs, which are ANB models. However, the expressiveness of AODE is still limited by the restricted structure of ODE. In this paper, we propose a model averaging method for NB Trees (NBTs) with flexible structures and present experimental results in terms of classification accuracy. Results of comparative experiments show that our proposed method outperforms AODE on classification accuracy.

References

[1]
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine learning 29(2), 131-163 (1997).
[2]
Chickering, D., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. The Journal of Machine Learning Research 5, 1287-1330 (2004).
[3]
Hovold, J.: Naive Bayes spam filtering using word-position-based attributes. In: Proceedings of the Second Conference on Email and Anti-Spam, CEAS (2005).
[4]
Quinlan, J.: C4. 5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993).
[5]
Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), pp. 202-207 (1996).
[6]
Sahami, M.: Learning limited dependence Bayesian classifiers. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), pp. 335-338 (1996).
[7]
Webb, G., Boughton, J., Wang, Z.: Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning 58(1), 5-24 (2005).
[8]
Jiang, L., Zhang, H.: Weightily averaged one-dependence estimators. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 970-974. Springer, Heidelberg (2006).
[9]
Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. The Journal of Machine Learning Research 3, 1157-1182 (2003).
[10]
Tang, E., Suganthan, P., Yao, X.: An analysis of diversity measures. Machine Learning 65, 247-271 (2006).
[11]
Cestnik, B., Bratko, I.: On estimating probabilities in tree pruning. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 138-150. Springer, Heidelberg (1991).
[12]
Mitchel, T.: Machine learning. McGraw Hill, New York (1997).
[13]
Breiman, L.: Random forests. Machine learning 45(1), 5-32 (2001).
[14]
Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory (COLT), pp. 144-152 (1992).
[15]
Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. Advances in Kernel Methods-Support Vector Learning 208 (1999).
[16]
Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation 13(3), 637-649 (2001).
[17]
Asuncion, A., Newman, D.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2007).
[18]
Whitten, I., Frank, E.: DataMining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005).
[19]
Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52(3), 239- 281 (2003).
[20]
Hsu, C., Huang, H., Wong, T.: Why discretization works for naive Bayesian classifiers. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp. 399-406 (2000).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ACML '09: Proceedings of the 1st Asian Conference on Machine Learning: Advances in Machine Learning
November 2009
411 pages
ISBN:9783642052231
  • Editors:
  • Zhi-Hua Zhou,
  • Takashi Washio

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 November 2009

Author Tags

  1. augmented naive Bayes
  2. averaged one-dependence estimators
  3. model averaging
  4. naive Bayes
  5. naive Bayes trees

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media