Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-25385-0_32guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Computational verifiable secret sharing revisited

Published: 04 December 2011 Publication History

Abstract

Verifiable secret sharing (VSS) is an important primitive in distributed cryptography that allows a dealer to share a secret among n parties in the presence of an adversary controlling at most t of them. In the computational setting, the feasibility of VSS schemes based on commitments was established over two decades ago. Interestingly, all known computational VSS schemes rely on the homomorphic nature of these commitments or achieve weaker guarantees. As homomorphism is not inherent to commitments or to the computational setting in general, a closer look at its utility to VSS is called for. In this work, we demonstrate that homomorphism of commitments is not a necessity for computational VSS in the synchronous or in the asynchronous communication model. We present new VSS schemes based only on the definitional properties of commitments that are almost as good as the existing VSS schemes based on homomorphic commitments. Importantly, they have significantly lower communication complexities than their (statistical or perfect) unconditional counterparts.
Further, in the synchronous communication model, we observe that a crucial interactive complexity measure of round complexity has never been formally studied for computational VSS. Interestingly, for the optimal resiliency conditions, the least possible round complexity in the known computational VSS schemes is identical to that in the (statistical or perfect) unconditional setting: three rounds. Considering the strength of the computational setting, this equivalence is certainly surprising. In this work, we show that three rounds are actually not mandatory for computational VSS. We present the first two-round VSS scheme for n≥2t+1 and lower-bound the result tightly by proving the impossibility of one-round computational VSS for t≥2 or n≤3t. We also include a new two-round VSS scheme using homomorphic commitments that has the same communication complexity as the well-known three-round Feldman and Pedersen VSS schemes.

References

[1]
Backes, M., Kate, A., Patra, A.: Computational Verifiable Secret Sharing Revisited. Cryptology ePrint Archive, Report 2011/281 (2011)
[2]
Blakley, G. R.: Safeguarding Cryptographic Keys. In: The National Computer Conference, pp. 313-317 (1979)
[3]
Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems. In: ACM CCS 2002, pp. 88-97 (2002)
[4]
Canetti, R.: Studies in Secure Multiparty Computation and Applications. Ph. D. thesis, The Weizmann Institute of Science (1996)
[5]
Canetti, R., Rabin, T.: Fast Asynchronous Byzantine Agreement with Optimal Resilience. In: ACM STOC 1993, pp. 42-51 (1993)
[6]
Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In: IEEE FOCS 1985, pp. 383-395 (1985)
[7]
D'Arco, P., Stinson, D. R.: On Unconditionally Secure Robust Distributed Key Distribution Centers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 346-363. Springer, Heidelberg (2002)
[8]
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17-47 (1993)
[9]
Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In: IEEE FOCS 1987, pp. 427-437 (1987)
[10]
Fitzi, M., Garay, J. A., Gollakota, S., Rangan, C. P., Srinathan, K.: Round-Optimal and Efficient Verifiable Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329-342. Springer, Heidelberg (2006)
[11]
Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: ACM STOC 2001, pp. 580-589 (2001)
[12]
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. of Cryptology 20(1), 51-83 (2007)
[13]
Gennaro, R., Rabin, M. O., Rabin, T.: Simplified VSS and Fact-Track Multiparty Computations with Applications to Threshold Cryptography. In: ACM PODC 1998, pp. 101-111 (1998)
[14]
Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. J. Cryptology 9(3), 167-190 (1996)
[15]
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691-729 (1991)
[16]
Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In: ACM STOC 2007, pp. 1-10 (2007)
[17]
Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201-215. Springer, Heidelberg (1996)
[18]
Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing or: How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339-352. Springer, Heidelberg (1995)
[19]
Kate, A., Goldberg, I.: Distributed Key Generation for the Internet. In: Proc. Intl. Conf. on Distributed Computing Systems (ICDCS), pp. 119-128 (2009)
[20]
Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the Round Complexity of VSS in Point-to-Point Networks. In: Aceto, L., Damgård, I., Goldberg, L. A., Halldórsson, M. M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499-510. Springer, Heidelberg (2008)
[21]
Kumaresan, R., Patra, A., Rangan, C. P.: The Round Complexity of Verifiable Secret Sharing: The Statistical Case. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 431-447. Springer, Heidelberg (2010)
[22]
Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect Zero-Knowledge Arguments for P Using Any One-Way Permutation. J. Cryptology 11(2), 87-108 (1998)
[23]
Patra, A., Choudhary, A., Rabin, T., Rangan, C. P.: The Round Complexity of Verifiable Secret Sharing Revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487-504. Springer, Heidelberg (2009)
[24]
Patra, A., Choudhary, A., Rangan, C. P.: Efficient Asynchronous Byzantine Agreement with Optimal Resilience. In: ACM PODC 2009, pp. 92-101 (2009)
[25]
Patra, A., Choudhary, A., Rangan, C. P.: Efficient Statistical Asynchronous Verifiable Secret Sharing with Optimal Resilience. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 74-92. Springer, Heidelberg (2010)
[26]
Pedersen, T. P.: A Threshold Cryptosystem Without a Trusted Party. In: Davies, D. W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522-526. Springer, Heidelberg (1991)
[27]
Pedersen, T. P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140. Springer, Heidelberg (1992)
[28]
Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority (Extended Abstract). In: ACM STOC 1989, pp. 73-85 (1989)
[29]
Schultz, D. A., Liskov, B., Liskov, M.: MPSS: Mobile Proactive Secret Sharing. ACM Trans. Inf. Syst. Secur. 13(4), 34 (2010)
[30]
Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612-613 (1979)
[31]
Zhou, L., Schneider, F. B., van Renesse, R.: APSS: Proactive Secret Sharing in Asynchronous Systems. ACM Trans. Inf. Syst. Secur. 8(3), 259-286 (2005)

Cited By

View all
  • (2024)Random Beacons in Monte Carlo: Efficient Asynchronous Random Beacon without Threshold CryptographyProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670326(2621-2635)Online publication date: 2-Dec-2024
  • (2024)Non-interactive VSS using Class Groups and Application to DKGProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670312(4286-4300)Online publication date: 2-Dec-2024
  • (2024)Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic ComplexityAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0941-3_4(100-128)Online publication date: 10-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ASIACRYPT'11: Proceedings of the 17th international conference on The Theory and Application of Cryptology and Information Security
December 2011
758 pages
ISBN:9783642253843
  • Editors:
  • Dong Hoon Lee,
  • Xiaoyun Wang

Sponsors

  • KOFST: Korean Federation of Science and Technology Societies
  • ETRI: Electronics and Telecommunications Research Institute
  • Seoul National University
  • Center for Information Security Technologies of Korea University: Center for Information Security Technologies of Korea University
  • Seoul Metropolitan Government: Seoul Metropolitan Government

In-Cooperation

  • KIISC: Korea Institute of Information Security and Cryptology
  • Korea Internet Security Agency: Korea Internet Security Agency
  • Digital Contents Society: Digital Contents Society

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 04 December 2011

Author Tags

  1. commitments
  2. homomorphism
  3. round complexity
  4. verifiable secret sharing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Random Beacons in Monte Carlo: Efficient Asynchronous Random Beacon without Threshold CryptographyProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670326(2621-2635)Online publication date: 2-Dec-2024
  • (2024)Non-interactive VSS using Class Groups and Application to DKGProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670312(4286-4300)Online publication date: 2-Dec-2024
  • (2024)Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic ComplexityAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0941-3_4(100-128)Online publication date: 10-Dec-2024
  • (2024)Evolving Secret Sharing Made ShortAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0941-3_3(69-99)Online publication date: 10-Dec-2024
  • (2024)Round-Optimal, Fully Secure Distributed Key GenerationAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68394-7_10(285-316)Online publication date: 18-Aug-2024
  • (2022)Round-Optimal Honest-Majority MPC in Minicrypt and with Everlasting SecurityTheory of Cryptography10.1007/978-3-031-22365-5_4(103-120)Online publication date: 7-Nov-2022
  • (2022)Verifiable Relation Sharing and Multi-verifier Zero-Knowledge in Two Rounds: Trading NIZKs with Honest MajorityAdvances in Cryptology – CRYPTO 202210.1007/978-3-031-15985-5_2(33-56)Online publication date: 15-Aug-2022
  • (2021)RandPiper – Reconfiguration-Friendly Random Beacons with Quadratic CommunicationProceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security10.1145/3460120.3484574(3502-3524)Online publication date: 12-Nov-2021
  • (2021)SodsBC/SodsBC++ & SodsMPC: Post-quantum Asynchronous Blockchain Suite for Consensus and Smart ContractsStabilization, Safety, and Security of Distributed Systems10.1007/978-3-030-91081-5_39(510-515)Online publication date: 17-Nov-2021
  • (2019)Linear ( t , n ) Secret Sharing Scheme with Reduced Number of PolynomialsSecurity and Communication Networks10.1155/2019/51345342019Online publication date: 4-Aug-2019
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media