Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-31113-0_5guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Elementary probability theory in the eindhoven style

Published: 25 June 2012 Publication History

Abstract

We extend the Eindhoven quantifier notation to elementary probability theory by adding "distribution comprehensions" to it.
Even elementary theories can be used in complicated ways, and this occurs especially when reasoning about computer programs: an instance of this is the multi-level probabilistic structures that arise in probabilistic semantics for security.
Our exemplary case study in this article is therefore the probabilistic reasoning associated with a quantitative noninterference semantics based on Hidden Markov Models of computation. But we believe the proposal here will be more generally applicable than that, and so we also revisit a number of popular puzzles, to illustrate the new notation's wider utility.

References

[1]
Cheng, S.: A crash course on the Lebesgue integral and measure theory (December 2011), www.gold-saucer.org/math/lebesgue/lebesgue.pdf
[2]
Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall (1976)
[3]
Dijkstra, E. W., Scholten, C. S.: Predicate Calculus and Program Semantics. Springer (1990)
[4]
Erwig, M., Kollmansberger, S.: Probabilistic functional programming in Haskell. Journal of Functional Programming 16, 21-34 (2006)
[5]
Fremlin, D. H.: Measure Theory. Torres Fremlin (2000)
[6]
Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: Chakravarty, M. M. T., Hu, Z., Danvy, O. (eds.) ICFP, pp. 2-14. ACM (2011)
[7]
Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol. 915, pp. 68-85. Springer (1981)
[8]
Goguen, J. A., Meseguer, J.: Unwinding and inference control. In: Proc. IEEE Symp. on Security and Privacy, pp. 75-86. IEEE Computer Society (1984)
[9]
Hehner, E.C. R.: A probability perspective. Form. Asp. Comput. 23, 391-419 (2011)
[10]
Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, pp. 186-195.
[11]
Jurafsky, D., Martin, J. H.: Speech and Language Processing. Prentice Hall International (2000)
[12]
Kiselyov, O., Shan, C.-C.: Embedded probabilistic programming. In: Taha, W. M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 360-384. Springer, Heidelberg (2009)
[13]
E Kowalski. Measure and integral (December 2011), www.math.ethz.ch/~kowalski/measure-integral.pdf
[14]
McIver, A. K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Tech. Mono. Comp. Sci. Springer, New York (2005)
[15]
McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P. G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223-235. Springer, Heidelberg (2010)
[16]
McIver, A., Meinicke, L., Morgan, C.: Hidden-Markov program algebra with iteration. At arXiv:1102.0333v1; to appear in Mathematical Structures in Computer Science in 2012 (2011)
[17]
McIver, A., Meinicke, L., Morgan, C.: A Kantorovich-monadic powerdomain for information hiding, with probability and nondeterminism. In: Proc. Logic in Computer Science, LiCS (2012)
[18]
Morgan, C.: Compositional noninterference from first principles. Formal Aspects of Computing, pp. 1-24 (2010), dx.doi.org/10.1007/s00165-010-0167-y
[19]
Morgan, C.: The shadow knows: refinement of ignorance in sequential programs. In: Yu, H.-J. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359-378. Springer, Heidelberg (2006)
[20]
Morgan, C.C.: The shadow knows: refinement of ignorance in sequential programs. Science of Computer Programming 74(8), 629-653 (2009)
[21]
Morgan, C.C., McIver, A. K., Seidel, K.: Probabilistic predicate transformers. ACM Trans. Prog. Lang. Sys. 18(3), 325-353 (1996), doi.acm.org/10.1145/229542.229547
[22]
Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. SIGPLAN Not. 37, 154-165 (2002)
[23]
Smith, G.: Adversaries and Information Leaks (Tutorial). In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 383-400. Springer, Heidelberg (2008)
  1. Elementary probability theory in the eindhoven style

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    MPC'12: Proceedings of the 11th international conference on Mathematics of Program Construction
    June 2012
    362 pages
    ISBN:9783642311123
    • Editors:
    • Jeremy Gibbons,
    • Pablo Nogueira

    Sponsors

    • Ministerio de Economía y Competitividad: Ministerio de Economía y Competitividad

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 25 June 2012

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media