Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-31365-3_27guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Solving non-linear arithmetic

Published: 26 June 2012 Publication History

Abstract

We present a new algorithm for deciding satisfiability of non-linear arithmetic constraints. The algorithm performs a Conflict-Driven Clause Learning (CDCL)-style search for a feasible assignment, while using projection operators adapted from cylindrical algebraic decomposition to guide the search away from the conflicting states.

References

[1]
Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44(3), 175-205 (2010).
[2]
Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298-302. Springer, Heidelberg (2007).
[3]
Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer (2006).
[4]
Brown, C.W.: Solution formula construction for truth invariant CAD's. PhD thesis, University of Delaware (1999).
[5]
Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin 37(4), 97-108 (2003).
[6]
Brown, W.S., Traub, J.F.: On Euclid's algorithm and the theory of subresultants. Journal of the ACM 18(4), 505-514 (1971).
[7]
Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds.): Computer algebra. Symbolic and algebraic computation. Springer (1982).
[8]
Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer (2004).
[9]
Cohen, H.: A Course in Computational Algebraic Number Theory. Springer (1993).
[10]
Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134-183. Springer, Heidelberg (1975).
[11]
de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg (2008).
[12]
Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2-9 (1997).
[13]
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209-236 (2007).
[14]
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT Solving for Termination Analysis with Polynomial Interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340-354. Springer, Heidelberg (2007).
[15]
Hong, H.: Comparison of several decision algorithms for the existential theory of the reals (1991).
[16]
Jovanovic, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 338-353. Springer, Heidelberg (2011).
[17]
Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509-523. Springer, Heidelberg (2009).
[18]
Loos, R.: Generalized polynomial remainder sequences. Computer Algebra: Symbolic and Algebraic Computation, 115-137 (1982).
[19]
McLaughlin, S., Harrison, J.V.: A Proof-Producing Decision Procedure for Real Arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295-314. Springer, Heidelberg (2005).
[20]
McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Logics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462-476. Springer, Heidelberg (2009).
[21]
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937-977 (2006).
[22]
Passmore, G.O.: Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex. PhD thesis, University of Edinburgh (2011).
[23]
Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485-501. Springer, Heidelberg (2009).
[24]
Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506-521 (1999).
[25]
Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation 41(9), 1021-1038 (2006).
[26]
Tarski, A.: A decision method for elementary algebra and geometry. Technical Report R-109, Rand Corporation (1951).
[27]
Tiwari, A.: An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248-262. Springer, Heidelberg (2005).
[28]
Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. AAECC 8, 85-101 (1993).
[29]
Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481-500. Springer, Heidelberg (2010).

Cited By

View all
  • (2024)SMT Theory Arbitrage: Approximating Unbounded Constraints using Bounded TheoriesProceedings of the ACM on Programming Languages10.1145/36563878:PLDI(246-271)Online publication date: 20-Jun-2024
  • (2024)Merging Adjacent Cells During Single Cell ConstructionComputer Algebra in Scientific Computing10.1007/978-3-031-69070-9_15(252-272)Online publication date: 1-Sep-2024
  • (2024)Recent Developments in Real Quantifier Elimination and Cylindrical Algebraic Decomposition (Extended Abstract of Invited Talk)Computer Algebra in Scientific Computing10.1007/978-3-031-69070-9_1(1-10)Online publication date: 1-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IJCAR'12: Proceedings of the 6th international joint conference on Automated Reasoning
June 2012
568 pages
ISBN:9783642313646
  • Editors:
  • Bernhard Gramlich,
  • Dale Miller,
  • Uli Sattler

Sponsors

  • Univ. of Manchester: University of Manchester
  • Microsoft Research: Microsoft Research

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 June 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media