Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-32943-2_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Symbolically bounding the drift in time-constrained MSC graphs

Published: 24 September 2012 Publication History

Abstract

Verifying systems involving both time and concurrency rapidly leads to undecidability, and requires restrictions to become effective. This paper addresses the emptiness problem for time-constrained MSC-Graphs (TC-MSC graphs for short), that is, checking whether there is a timed execution compatible with a TC-MSC graph specification. This problem is known to be undecidable in general [11], and decidable for some regular specifications [11]. We establish decidability of the emptiness problem under the condition that, for a given K, no path of the TC-MSC graph forces any node to take more than K time units to complete. We prove that this condition can be effectively checked. The proofs use a novel symbolic representation for runs, where time constraints are encoded as a system of inequalities. This allows us to handle non-regular specifications and improve efficiency w.r.t. using interleaved representations.

References

[1]
Akshay, S., Genest, B., Hélouët, L., Yang, S.: Regular set of representatives for time-constrained MSC graphs. Inf. Proc. Letters 112(14-15), 592-598 (2012).
[2]
Akshay, S., Mukund, M., Kumar, K.N.: Checking Coverage for Infinite Collections of Timed Scenarios. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 181-196. Springer, Heidelberg (2007).
[3]
Akshay, S., Gastin, P., Kumar, N.K., Mukund, M.: Model Checking Time-Constrained Scenario-based Specifications. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 290-302. Springer, Heidelberg (2007).
[4]
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comp. Sci. 126(2), 183-235 (1994).
[5]
Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114-129. Springer, Heidelberg (1999).
[6]
Bengtsson, J.E., Yi, W.: On Clock Difference Constraints and Termination in Reachability Analysis of Timed Automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 491-503. Springer, Heidelberg (2003).
[7]
Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Unfoldings for Networks of Timed Automata. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 292-306. Springer, Heidelberg (2006).
[8]
Cassez, F., Chatain, T., Jard, C.: Symbolic Unfoldings for Networks of Timed Automata. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 307-321. Springer, Heidelberg (2006).
[9]
Dantzig, G., Eaves, B.C.: Fourier-Motzkin Elimination and Its Dual. J. Comb. Theory, Ser. A 14(3), 288-297 (1973).
[10]
Dima, C., Lanotte, R.: Distributed Time-Asynchronous Automata. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 185-200. Springer, Heidelberg (2007).
[11]
Gastin, P., Kumar, K.N., Mukund, M.: Reachability and boundedness in time-constrained MSC graphs. In: Perspectives in Concurrency - A Festschrift for P. S. Thiagarajan. Universities Press, India (2009).
[12]
Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A theory of regular MSC languages. Inf. and Comp. 202(1), 1-38 (2005).
[13]
ITU-TS Recommendation Z.120: Message Sequence Chart (MSC 1999) (1999).
[14]
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 3rd edn. Springer (2006).
[15]
Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theoretical Comp. Sci. 345(1), 27-59 (2005).
[16]
Muscholl, A., Peled, D.: Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81-91. Springer, Heidelberg (1999).
[17]
Shostak, R.: Deciding linear inequalities by computing loop residues. JACM 28(4), 769-779 (1981).
[18]
Zhao, J., Xu, H., Li, X., Zheng, T., Zheng, G.: Partial Order Path Technique for Checking Parallel Timed Automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 417-432. Springer, Heidelberg (2002).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICTAC'12: Proceedings of the 9th international conference on Theoretical Aspects of Computing
September 2012
259 pages
ISBN:9783642329425
  • Editors:
  • Abhik Roychoudhury,
  • Meenakshi D'Souza

Sponsors

  • International Institute for Software Technology of the United Nations University: International Institute for Software Technology of the United Nations University
  • The International Institute of Information Technology Bangalore: The International Institute of Information Technology Bangalore

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 24 September 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media