Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-33712-3_45guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Graph matching via sequential monte carlo

Published: 07 October 2012 Publication History

Abstract

Graph matching is a powerful tool for computer vision and machine learning. In this paper, a novel approach to graph matching is developed based on the sequential Monte Carlo framework. By constructing a sequence of intermediate target distributions, the proposed algorithm sequentially performs a sampling and importance resampling to maximize the graph matching objective. Through the sequential sampling procedure, the algorithm effectively collects potential matches under one-to-one matching constraints to avoid the adverse effect of outliers and deformation. Experimental evaluations on synthetic graphs and real images demonstrate its higher robustness to deformation and outliers.

References

[1]
Duchenne, O., Joulin, A., Ponce, J.: A graph-matching kernel for object categorization. In: ICCV (2011).
[2]
Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., Wang, S.: 2d nonrigid partial shape matching using mcmc and contour subdivision. In: CVPR (2011).
[3]
Birchfield, S.: KLT: An implementation of the kanade-lucas-tomasi feature tracker (1998).
[4]
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005).
[5]
Leordeanu, M., Hebert, M.: An integer projected fixed point method for graph matching and map inference. In: NIPS (2009).
[6]
Cho, M., Lee, J., Lee, K.M.: Reweighted Random Walks for Graph Matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492-505. Springer, Heidelberg (2010).
[7]
Lee, J., Cho, M., Lee, K.M.: A graph matching algorithm using data-driven markov chain monte carlo sampling. In: ICPR (2010).
[8]
Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. PAMI (2010).
[9]
Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: CVPR (2011).
[10]
Caetano, T., McAuley, J., Cheng, L., Le, Q., Smola, A.: Learning graph matching. PAMI (2009).
[11]
Leordeanu, M., Hebert, M.: Unsupervised learning for graph matching. In: CVPR (2009).
[12]
Cho, M., Lee, K.M.: Progressive graph matching: Making a move of graphs via probabilistic voting. In: CVPR (2012).
[13]
Cappé, O., Godsill, S., Moulines, E.: An overview of existing methods and recent advances in sequential monte carlo. Proc. IEEE (2007).
[14]
Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. PAMI 25, 187-199 (2003).
[15]
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. PAMI, 411-436 (1996).
[16]
Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006).
[17]
Torresani, L., Kolmogorov, V., Rother, C.: Feature Correspondence Via Graph Matching: Models and Global Optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596-609. Springer, Heidelberg (2008).
[18]
Dellaert, F., Seitz, S.M., Thrun, S., Thorpe, C.: Feature correspondence: A markov chain monte carlo approach. In: NIPS (2001).
[19]
Tamminen, T., Lampinen, J.: Sequential monte carlo for bayesian matching of objects with occlusions. PAMI (2006).
[20]
Lu, C., Latecki, L.J., Adluru, N., Yang, X., Ling, H.: Shape guided contour grouping with particle filters. In: ICCV (2009).
[21]
Yang, X., Latecki, L.J.: Weakly Supervised Shape Based Object Detection with Particle Filter. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 757-770. Springer, Heidelberg (2010).
[22]
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV (1998).
[23]
Moral, P.D., Doucet, A.: Sequential monte carlo for bayesian computation. Journal of the Royal Statistical Society (2007).
[24]
Moral, P.D., Doucet, A., Jarsa, A.: Sequential monte carlo samplers. Journal of the Royal Statistical Society, 411-436 (2006).
[25]
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008).
[26]
Munkres, J.: Algorithms for the assignment and transportation problems. SIAM (1957).
[27]
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC (2002).

Cited By

View all
  • (2018)Incremental Multi-graph Matching via Diversity and Randomness Based Graph ClusteringComputer Vision – ECCV 201810.1007/978-3-030-01261-8_9(142-158)Online publication date: 8-Sep-2018
  • (2016)MatchDRProceedings of the 24th ACM international conference on Multimedia10.1145/2964284.2967293(606-610)Online publication date: 1-Oct-2016
  • (2016)A Short Survey of Recent Advances in Graph MatchingProceedings of the 2016 ACM on International Conference on Multimedia Retrieval10.1145/2911996.2912035(167-174)Online publication date: 6-Jun-2016
  1. Graph matching via sequential monte carlo

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ECCV'12: Proceedings of the 12th European conference on Computer Vision - Volume Part III
    October 2012
    880 pages
    ISBN:9783642337116
    • Editors:
    • Andrew Fitzgibbon,
    • Svetlana Lazebnik,
    • Pietro Perona,
    • Yoichi Sato,
    • Cordelia Schmid

    Sponsors

    • TOYOTA: TOYOTA
    • Google Inc.
    • IBMR: IBM Research
    • NVIDIA
    • Microsoft Reasearch: Microsoft Reasearch

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 07 October 2012

    Author Tags

    1. feature correspondence
    2. graph matching
    3. image matching
    4. object recognition
    5. sequential Monte Carlo

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 05 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Incremental Multi-graph Matching via Diversity and Randomness Based Graph ClusteringComputer Vision – ECCV 201810.1007/978-3-030-01261-8_9(142-158)Online publication date: 8-Sep-2018
    • (2016)MatchDRProceedings of the 24th ACM international conference on Multimedia10.1145/2964284.2967293(606-610)Online publication date: 1-Oct-2016
    • (2016)A Short Survey of Recent Advances in Graph MatchingProceedings of the 2016 ACM on International Conference on Multimedia Retrieval10.1145/2911996.2912035(167-174)Online publication date: 6-Jun-2016

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media