Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-33712-3_62guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Real-time compressive tracking

Published: 07 October 2012 Publication History

Abstract

It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these mis-aligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

References

[1]
Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. IJCV 38, 63-84 (1998).
[2]
Jepson, A., Fleet, D., Maraghi, T.: Robust online appearance models for visual tracking. PAMI 25, 1296-1311 (2003).
[3]
Avidan, S.: Support vector tracking. PAMI 26, 1064-1072 (2004).
[4]
Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. PAMI 27, 1631-1643 (2005).
[5]
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online boosting. In: BMVC, pp. 47-56 (2006).
[6]
Ross, D., Lim, J., Lin, R., Yang, M.-H.: Incremental learning for robust visual tracking. IJCV 77, 125-141 (2008).
[7]
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234-247. Springer, Heidelberg (2008).
[8]
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619-1632 (2011).
[9]
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: CVPR, pp. 1305-1312 (2011).
[10]
Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. PAMI 33, 2259-2272 (2011).
[11]
Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifier by structural constraints. In: CVPR, pp. 49-56 (2010).
[12]
Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289-1306 (2006).
[13]
Candes, E., Tao, T.: Near optimal signal recovery from random projections and universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406-5425 (2006).
[14]
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI 31, 210-227 (2009).
[15]
Candes, E., Tao, T.: Decoding by linear programing. IEEE Trans. Inform. Theory 51, 4203-4215 (2005).
[16]
Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci 66, 671-687 (2003).
[17]
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx 28, 253-263 (2008).
[18]
Liu, L., Fieguth, P.: Texture classification from random features. PAMI 34, 574-586 (2012).
[19]
Li, P., Hastie, T., Church, K.: Very sparse random projections. In: KDD, pp. 287-296 (2006).
[20]
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, pp. 511-518 (2001).
[21]
Li, S., Zhang, Z.: Floatboost learning and statistical face detection. PAMI 26, 1-12 (2004).
[22]
Ng, A., Jordan, M.: On discriminative vs. generative classifier: a comparison of logistic regression and naive bayes. In: NIPS, pp. 841-848 (2002).
[23]
Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12, 228-235 (1984).
[24]
Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: Transfer learning from unlabeled data. In: ICML (2007).
[25]
Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Applications to image and text data. In: KDD, pp. 245-250 (2001).
[26]
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recogntion. PAMI 28, 2037-2041 (2006).
[27]
Leonardis, A., Bischof, H.: Robust recogtion using eigenimages. CVIU 78, 99-118 (2000).
[28]
Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269-1276 (2010).
[29]
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST Parallel Robust Online Simple Tracking. In: CVPR (2010).
[30]
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragements-based tracking using the integral histogram. In: CVPR, pp. 798-805 (2006).
[31]
Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV, pp. 263-270 (2011).

Cited By

View all
  • (2022)Target Tracking Algorithm Based on Multi-feature Adaptive Fusion in Complex ScenesProceedings of the 2022 2nd International Conference on Control and Intelligent Robotics10.1145/3548608.3559213(310-315)Online publication date: 24-Jun-2022
  • (2021)Robust Visual Tracking Based on Convolutional Sparse CodingWireless Communications & Mobile Computing10.1155/2021/55312222021Online publication date: 1-Jan-2021
  • (2021)Generalized Intersection over Union Based Online Weighted Multiple Instance Learning Algorithm for Object TrackingProceedings of the 2021 13th International Conference on Machine Learning and Computing10.1145/3457682.3457698(111-116)Online publication date: 26-Feb-2021
  • Show More Cited By

Index Terms

  1. Real-time compressive tracking
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          ECCV'12: Proceedings of the 12th European conference on Computer Vision - Volume Part III
          October 2012
          880 pages
          ISBN:9783642337116
          • Editors:
          • Andrew Fitzgibbon,
          • Svetlana Lazebnik,
          • Pietro Perona,
          • Yoichi Sato,
          • Cordelia Schmid

          Sponsors

          • TOYOTA: TOYOTA
          • Google Inc.
          • IBMR: IBM Research
          • NVIDIA
          • Microsoft Reasearch: Microsoft Reasearch

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 07 October 2012

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 03 Oct 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2022)Target Tracking Algorithm Based on Multi-feature Adaptive Fusion in Complex ScenesProceedings of the 2022 2nd International Conference on Control and Intelligent Robotics10.1145/3548608.3559213(310-315)Online publication date: 24-Jun-2022
          • (2021)Robust Visual Tracking Based on Convolutional Sparse CodingWireless Communications & Mobile Computing10.1155/2021/55312222021Online publication date: 1-Jan-2021
          • (2021)Generalized Intersection over Union Based Online Weighted Multiple Instance Learning Algorithm for Object TrackingProceedings of the 2021 13th International Conference on Machine Learning and Computing10.1145/3457682.3457698(111-116)Online publication date: 26-Feb-2021
          • (2021)Multiple kernel boosting based tracking using pooling features2015 IEEE International Conference on Image Processing (ICIP)10.1109/ICIP.2015.7351396(3210-3214)Online publication date: 9-Mar-2021
          • (2021)Compressive classification based on autoregressive features2016 International Conference on Communications (COMM)10.1109/ICComm.2016.7528324(433-438)Online publication date: 10-Mar-2021
          • (2020)Auto-KeyProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/33810044:1(1-23)Online publication date: 18-Mar-2020
          • (2020)Real-time visual tracking using complementary kernel support correlation filtersFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-018-8116-114:2(417-429)Online publication date: 1-Apr-2020
          • (2020)Multi-task non-negative matrix factorization for visual object trackingPattern Analysis & Applications10.1007/s10044-019-00812-423:1(493-507)Online publication date: 1-Feb-2020
          • (2020)Long-term correlation tracking via spatial–temporal contextThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-019-01631-836:2(425-442)Online publication date: 1-Feb-2020
          • (2020)A partitioned quasi-likelihood for distributed statistical inferenceComputational Statistics10.1007/s00180-020-00974-435:4(1577-1596)Online publication date: 1-Dec-2020
          • Show More Cited By

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media