Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-37447-0_25guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Apparel classification with style

Published: 05 November 2012 Publication History

Abstract

We introduce a complete pipeline for recognizing and classifying people's clothing in natural scenes. This has several interesting applications, including e-commerce, event and activity recognition, online advertising, etc. The stages of the pipeline combine a number of state-of-the-art building blocks such as upper body detectors, various feature channels and visual attributes. The core of our method consists of a multi-class learner based on a Random Forest that uses strong discriminative learners as decision nodes. To make the pipeline as automatic as possible we also integrate automatically crawled training data from the web in the learning process. Typically, multi-class learning benefits from more labeled data. Because the crawled data may be noisy and contain images unrelated to our task, we extend Random Forests to be capable of transfer learning from different domains. For evaluation, we define 15 clothing classes and introduce a benchmark data set for the clothing classification task consisting of over 80,000 images, which we make publicly available. We report experimental results, where our classifier outperforms an SVM baseline with 41.38 % vs 35.07 % average accuracy on challenging benchmark data.

References

[1]
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: ICCV (2006)
[2]
Breiman, L.: Random forests. Machine Learning, 5-32 (2001)
[3]
Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning methods in high dimensions. In: ICML (2008)
[4]
Chen, H., Xu, Z. J., Liu, Z. Q., Zhu, S.C.: Composite Templates for Cloth Modeling and Sketching. In: CVPR (2006)
[5]
Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Technical Report MSR-TR-2011-114, Microsoft Research (2011)
[6]
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)
[7]
Daumé, H.: Frustratingly easy domain adaptation. Annual Meeting-Association for Computational Linguistics 45, 256 (2007)
[8]
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009)
[9]
Eichner, M., Ferrari, V.: CALVIN Upper-body detector for detection in still images
[10]
Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., Lin, C. J.: LIBLINEAR: A library for large linear classification. JMLR 9 (2008)
[11]
Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR (2009)
[12]
Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS (2008)
[13]
Gallagher, A.C.: Clothing cosegmentation for recognizing people. In: CVPR (2008)
[14]
Hu, Z., Yan, H., Lin, X.: Clothing segmentation using foreground and background estimation based on the constrained Delaunay triangulation. Pattern Recognition 41 (2008)
[15]
Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML (1999)
[16]
Kumar, N., Berg, A.C., Belhumeur, P. N., Nayar, S. K.: Attribute and simile classifiers for face verification. In: ICCV (2009)
[17]
Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR (2009)
[18]
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)
[19]
Leistner, C., Saffari, A., Santner, J., Bischof, H.: Semi-Supervised Random Forests. In: ICCV (2009)
[20]
Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-Shop: Cross-Scenario Clothing Retrieval via Parts Alignment and Auxiliary Set. In: CVPR (2012)
[21]
Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: ICOR (1994)
[22]
Pan, S. J., Yang, Q.: A survey on transfer learning. TKDE (2010)
[23]
Shechtman, E., Irani, M.: Matching Local Self-Similarities across Images and Videos. In: CVPR (2007)
[24]
Song, Z., Wang, M., Hua, X.s., Yan, S.: Predicting occupation via human clothing and contexts. In: ICCV (2011)
[25]
Sorokin, A., Forsyth, D.: Utility data annotation with amazon mechanical turk. In: Workshop on Internet Vision (2008)
[26]
Stark, M., Goesele, M., Schiele, B.: A shape-based object class model for knowledge transfer. In: ICCV (2009)
[27]
Wang, N., Ai, H.:Who Blocks Who: Simultaneous clothing segmentation for grouping images. In: ICCV (2011)
[28]
Wang, X., Zhang, T.: Clothes search in consumer photos via color matching and attribute learning. In: MM. ACM Press (2011)
[29]
Yamaguchi, K., Kiapour, H., Ortiz, L., Berg, T. L.: Parsing Clothing in Fashion Photographs. In: CVPR (2012)
[30]
Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: CVPR (2011)

Cited By

View all
  • (2022)Design of Garment Style Recommendation System Based on Interactive Genetic AlgorithmComputational Intelligence and Neuroscience10.1155/2022/91321652022Online publication date: 1-Jan-2022
  • (2020)Fashionpedia: Ontology, Segmentation, and an Attribute Localization DatasetComputer Vision – ECCV 202010.1007/978-3-030-58452-8_19(316-332)Online publication date: 23-Aug-2020
  • (2019)Interpretable Partitioned Embedding for Intelligent Multi-item Fashion Outfit CompositionACM Transactions on Multimedia Computing, Communications, and Applications10.1145/332633215:2s(1-20)Online publication date: 29-Jul-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ACCV'12: Proceedings of the 11th Asian conference on Computer Vision - Volume Part IV
November 2012
653 pages
ISBN:9783642374463
  • Editors:
  • Kyoung Mu Lee,
  • Yasuyuki Matsushita,
  • James M. Rehg,
  • Zhanyi Hu

Sponsors

  • DCC: Daejeon Convention Center
  • DMCITY: Daejeon Metropolitan City
  • KTO: Korea Tourism Organization
  • Kaist
  • DIME: Daejeon International Marketing Enterprise

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 November 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Design of Garment Style Recommendation System Based on Interactive Genetic AlgorithmComputational Intelligence and Neuroscience10.1155/2022/91321652022Online publication date: 1-Jan-2022
  • (2020)Fashionpedia: Ontology, Segmentation, and an Attribute Localization DatasetComputer Vision – ECCV 202010.1007/978-3-030-58452-8_19(316-332)Online publication date: 23-Aug-2020
  • (2019)Interpretable Partitioned Embedding for Intelligent Multi-item Fashion Outfit CompositionACM Transactions on Multimedia Computing, Communications, and Applications10.1145/332633215:2s(1-20)Online publication date: 29-Jul-2019
  • (2019)Style conditioned recommendationsProceedings of the 13th ACM Conference on Recommender Systems10.1145/3298689.3347007(128-136)Online publication date: 10-Sep-2019
  • (2018)Large Scale Fashion Search System with Deep Learning and Quantization IndexingProceedings of the 9th International Symposium on Information and Communication Technology10.1145/3287921.3287964(106-113)Online publication date: 6-Dec-2018
  • (2018)Interpretable Partitioned Embedding for Customized Multi-item Fashion Outfit CompositionProceedings of the 2018 ACM on International Conference on Multimedia Retrieval10.1145/3206025.3206048(143-151)Online publication date: 5-Jun-2018
  • (2018)Personalized clothing recommendation combining user social circle and fashion style consistencyMultimedia Tools and Applications10.1007/s11042-017-5245-177:14(17731-17754)Online publication date: 1-Jul-2018
  • (2018)Tiered Deep Similarity Search for FashionComputer Vision – ECCV 2018 Workshops10.1007/978-3-030-11015-4_3(21-29)Online publication date: 8-Sep-2018
  • (2018)Street2Fashion2Shop: Enabling Visual Search in Fashion e-Commerce Using Studio ImagesPattern Recognition Applications and Methods10.1007/978-3-030-05499-1_1(3-26)Online publication date: 16-Jan-2018
  • (2017)Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer NetworksProceedings of the 25th ACM international conference on Multimedia10.1145/3123266.3123276(172-180)Online publication date: 23-Oct-2017
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media