Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-37484-5_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Exploring high-level plane primitives for indoor 3d reconstruction with a hand-held RGB-D camera

Published: 05 November 2012 Publication History

Abstract

Given a hand-held RGB-D camera (e.g. Kinect), methods such as Structure from Motion (SfM) and Iterative Closest Point (ICP), perform poorly when reconstructing indoor scenes with few image features or little geometric structure information. In this paper, we propose to extract high level primitives---planes---from an RGB-D camera, in addition to low level image features (e.g. SIFT), to better constrain the problem and help improve indoor 3D reconstruction. Our work has two major contributions: first, for frame to frame matching, we propose a new scheme which takes into account both low-level appearance feature correspondences in RGB image and high-level plane correspondences in depth image. Second, in the global bundle adjustment step, we formulate a novel error measurement that not only takes into account the traditional 3D point re-projection errors, but also the planar surface alignment errors. We demonstrate with real datasets that our method with plane constraints achieves more accurate and more appealing results comparing with other state-of-the-art scene reconstruction algorithms in aforementioned challenging indoor scenarios.

References

[1]
Henry, P., Krainin, M., Ren, X., Herbrt, E., Fox, D.: Rgb-d mapping: Using depth cameras for dense 3d modeling of indoor environments. ISER (2010)
[2]
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE ISMAR (2011)
[3]
Neumann, D., Lugauer, F., Bauer, S., Wasza, J., Hornegger, J.: Real-time rgb-d mapping on the gpu using the random ball cover data structure. In: IEEE ICCV/CDC4CV (2011)
[4]
Lieberknecht, S., Huber, A., Ilic, S., Benhimane, S.: Rgb-d camera-based parallel tracking and meshing. In: ISMAR (2011)
[5]
Snavely, N., Seitz, S. M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (2007)
[6]
Snavely, N., Seitz, S. M., Szeliski, R.: Photo tourism: Exploring image collections in 3d. ACM Transactions on Graphics (2006)
[7]
Crandall, D., Owens, A., Snavely, N., Huttenlocher, D. P.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR (2011)
[8]
Sinha, S. N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV (2009)
[9]
Furukawa, Y., Curless, B., Seitz, S. M., Szeliski, R.: Manhattan-world stereo. In: CVPR (2009)
[10]
Gallup, D., Frahm, J.-M.: Piecewise planar and non-planar stereo for urban scene reconstruction. In: CVPR (2010)
[11]
Lee, G. H., Fraundorfer, F., Pollefeys, M.: Mav visual slam with plane constraint. In: IEEE Int. Conf. on Robotics and Automation (2011)
[12]
Pathak, K., Birk, A., Vaskevicius, N., Poppinga, J.: Fast registration based on noisy planes with unknown correspondesces for 3-d mapping. IEEE Transactions on Robotics (2010)
[13]
Pathak, K., Vaskevicius, N., Poppinga, J., Pfingsthorn, M., Schwertfeger, S., Birk, A.: Fast 3d mapping by matching planes extracted from range sensor point-clouds. IROS (2009)
[14]
Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. IJCV (2004)
[15]
Steffen, R., Frahm, J.-M., Förstner, W.: Relative Bundle Adjustment Based on Trifocal Constraints. In: Kutulakos, K. N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 282-295. Springer, Heidelberg (2012)
[16]
Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. IROS (2008)
[17]
Borrmann, D., Elseberg, J., Lingemann, K., Nuhter, A.: The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Research 02, 1330- 1334 (2011)
[18]
Raguram, R., Frahm, J.-M., Pollefeys, M.: A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500-513. Springer, Heidelberg (2008)
[19]
Fischler, M. A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24 (1981)
[20]
Lourakis, M. I. A.: Sparse Non-linear Least Squares Optimization for Geometric Vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 43-56. Springer, Heidelberg (2010)
[21]
Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3d. IROS (2007)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ACCV'12: Proceedings of the 11th international conference on Computer Vision - Volume 2
November 2012
605 pages
ISBN:9783642374838
  • Editors:
  • Jong-Il Park,
  • Junmo Kim

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 November 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Semantic Ground Plane Constraint in Visual SLAM for Indoor ScenesPattern Recognition and Computer Vision10.1007/978-3-030-60633-6_22(268-279)Online publication date: 16-Oct-2020
  • (2018)Data-driven contextual modeling for 3D scene understandingComputers and Graphics10.1016/j.cag.2015.11.00355:C(55-67)Online publication date: 23-Dec-2018
  • (2018)PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D ReconstructionComputer Vision – ECCV 201810.1007/978-3-030-01237-3_46(767-784)Online publication date: 8-Sep-2018
  • (2018)Proxy Clouds for Live RGB-D Stream Processing and ConsolidationComputer Vision – ECCV 201810.1007/978-3-030-01231-1_16(255-271)Online publication date: 8-Sep-2018
  • (2017)3DliteACM Transactions on Graphics10.1145/3130800.313082436:6(1-14)Online publication date: 20-Nov-2017
  • (2017)Indoor scene reconstruction from a sparse set of 3D shotsProceedings of the Computer Graphics International Conference10.1145/3095140.3095167(1-5)Online publication date: 27-Jun-2017
  • (2017)Creating Immersive Virtual Reality Scenes Using a Single RGB-D CameraImage Analysis and Recognition10.1007/978-3-319-59876-5_25(221-230)Online publication date: 5-Jul-2017
  • (2015)Online Structure Analysis for Real-Time Indoor Scene ReconstructionACM Transactions on Graphics10.1145/276882134:5(1-13)Online publication date: 3-Nov-2015

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media