Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-40047-6_27guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Scheduling jobs in the cloud using on-demand and reserved instances

Published: 26 August 2013 Publication History

Abstract

Deploying applications in leased cloud infrastructure is increasingly considered by a variety of business and service integrators. However, the challenge of selecting the leasing strategy -- larger or faster instances? on-demand or reserved instances? etc.-- and to configure the leasing strategy with appropriate scheduling policies is still daunting for the (potential) cloud user. In this work, we investigate leasing strategies and their policies from a broker's perspective. We propose, CoH, a family of Cloud-based, online, Hybrid scheduling policies that minimizes rental cost by making use of both on-demand and reserved instances. We formulate the resource provisioning and job allocation policies as Integer Programming problems. As the policies need to be executed online, we limit the time to explore the optimal solution of the integer program, and compare the obtained solution with various heuristics-based policies; then automatically pick the best one. We show, via simulation and using multiple real-world traces, that the hybrid leasing policy can obtain significantly lower cost than typical heuristics-based policies.

References

[1]
Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: CCGrid 2010, pp. 43-52 (2010)
[2]
Schwiegelshohn, U., Badia, R. M., Bubak, M., et al.: Perspectives on grid computing. In: FGCS 2010, vol. 26(8) (2010)
[3]
Murphy, M., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual organization clusters. In: CCGrid 2009, pp. 364-371 (2009)
[4]
Ben-Yehuda, O. A., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: Expert: Pareto-efficient task replication on grids and a cloud. In: IPDPS 2012, pp. 167-178 (2012)
[5]
Fölling, A., Hofmann, M.: Improving scheduling performance using a Q-learningbased leasing policy for clouds. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P. G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 337-349. Springer, Heidelberg (2012)
[6]
de Assuncao, M. D., Costanzo, A.d., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: HPDC 2009, pp. 141-150 (2009)
[7]
Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. In: TPDS 2011, pp. 985-997 (2011)
[8]
Webb, J.: How the cloud helps Netflix (May 2011), http://radar.oreilly.com/2011/05/netflix-cloud.html
[9]
Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provisioning system for the cloud. In: ICDCS 2011, pp. 559-570 (2011)
[10]
Nicolae, B., Cappello, F., Antoniu, G.: Optimizing multi-deployment on clouds by means of self-adaptive prefetching. In: Euro-Par 2011, pp. 503-513 (2011)
[11]
Villegas, D., Antoniou, A., Sadjadi, S. M., Iosup, A.: An analysis of provisioning and allocation policies for infrastructure-as-a-service clouds. In: CCGrid 2012 (2012)
[12]
Huberman, B. A.: An Economics Approach to Hard Computational Problems. Science 275, 51-54 (1997)
[13]
Stillwell, M., Vivien, F., Casanova, H.: Dynamic fractional resource scheduling for hpc workloads. In: IPDPS 2010 (2010)
[14]
Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. TPDS (2010)
[15]
Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multiplayer online games. TPDS 22(3) (2011)
[16]
Feitelson, D.: Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
[17]
Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D. H. J.: The grid workloads archive. FGCS 2008 24(7), 672-686 (2008)
[18]
Guo, A.Y., Iosup: The game trace archive. In: NETGAMES (2012)
[19]
Guo, Y., Shen, S., Visser, O., Iosup, A.: An Analysis of Online Match-Based Games. In: MMVE 2012 (2012)
[20]
Zhang, T., Du, Z., Chen, Y., Ji, X., Wang, X.: Typical virtual appliances: An optimized mechanism for virtual appliances provisioning and management. Journal of Systems and Software 84(3), 377 (2011)
[21]
Hadji, M., Zeghlache, D.: Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. In: CLOUD 2012, pp. 876-882 (2012)
[22]
Ren, S., He, Y., Xu, F.: Provably-efficient job scheduling for energy and fairness in geographically distributed data centers. In: ICDCS 2012, pp. 22-31 (2012)
[23]
Tordsson, J., Montero, R. S., Moreno-Vozmediano, R., Llorente, I. M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. 28(2) (2012)
[24]
Genaud, S., Gossa, J.: Cost-wait trade-offs in client-side resource provisioning with elastic clouds. In: CLOUD 2011 (2011)
[25]
Deng, K., Verboon, R., Iosup, A.: A Periodic Portfolio Scheduler for Scientific Computing in the Data Center. In: JSSPP (2013)
[26]
Oprescu, A., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In: CloudCom 2010, pp. 351-359 (2010)
[27]
Mao, M. M., Li, J., Humphrey: Cloud auto-scaling with deadline and budget constraints. In: GRID 2010, pp. 41-48 (2010)
[28]
Hong, Y. J., Xue, J., Thottethodi: Selective commitment and selective margin: Techniques to minimize cost in an iaas cloud. In: ISPASS 2012, pp. 99-109 (2012)
[29]
Chaisiri, S., Lee, B. S., Niyato, D.: Optimization of resource provisioning cost in cloud computing. Transactions on Services Computing, 164-177 (2012)
[30]
Ostermann, S., Prodan, R.: Impact of variable priced cloud resources on scientific workflow scheduling. In: Euro-Par 2012, pp. 350-362 (2012)
[31]
Song, Y., Zafer, M., Lee, K. W.: Optimal bidding in spot instance market. In: INFOCOM 2012, pp. 190-198 (2012)

Cited By

View all
  • (2023)Is Sharing Caring? Analyzing the Incentives for Shared Cloud ClustersProceedings of the 2023 ACM/SPEC International Conference on Performance Engineering10.1145/3578244.3583730(7-16)Online publication date: 15-Apr-2023
  • (2022)Optimization Heuristics for Cost-Efficient Long-Term Cloud Portfolio AllocationsInformation Integration and Web Intelligence10.1007/978-3-031-21047-1_26(309-323)Online publication date: 28-Nov-2022
  • (2020)Waiting gameProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3433701.3433790(1-14)Online publication date: 9-Nov-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Euro-Par'13: Proceedings of the 19th international conference on Parallel Processing
August 2013
885 pages
ISBN:9783642400469
  • Editors:
  • Felix Wolf,
  • Bernd Mohr,
  • Dieter Mey

Sponsors

  • INTEL: Intel Corporation
  • Deutsche Forschungsgemeinschaft
  • NVIDIA
  • Bull GmbH: Bull GmbH

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 August 2013

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Is Sharing Caring? Analyzing the Incentives for Shared Cloud ClustersProceedings of the 2023 ACM/SPEC International Conference on Performance Engineering10.1145/3578244.3583730(7-16)Online publication date: 15-Apr-2023
  • (2022)Optimization Heuristics for Cost-Efficient Long-Term Cloud Portfolio AllocationsInformation Integration and Web Intelligence10.1007/978-3-031-21047-1_26(309-323)Online publication date: 28-Nov-2022
  • (2020)Waiting gameProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3433701.3433790(1-14)Online publication date: 9-Nov-2020
  • (2018)A SPEC RG Cloud Group's Vision on the Performance Challenges of FaaS Cloud ArchitecturesCompanion of the 2018 ACM/SPEC International Conference on Performance Engineering10.1145/3185768.3186308(21-24)Online publication date: 2-Apr-2018
  • (2018)Online over time processing of combinatorial problemsConstraints10.1007/s10601-018-9287-423:3(310-334)Online publication date: 1-Jul-2018
  • (2016)Resource scheduling for infrastructure as a service (IaaS) in cloud computingJournal of Network and Computer Applications10.1016/j.jnca.2016.04.01668:C(173-200)Online publication date: 1-Jun-2016
  • (2015)A Two-Dimensional SLA for Services Scheduling in Multiple IaaS Cloud ProvidersInternational Journal of Distributed Systems and Technologies10.4018/IJDST.20151001036:4(45-64)Online publication date: 1-Oct-2015
  • (2015)An availability-on-demand mechanism for datacentersProceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing10.1109/CCGrid.2015.58(495-504)Online publication date: 4-May-2015
  • (2013)Exploring portfolio scheduling for long-term execution of scientific workloads in IaaS cloudsProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis10.1145/2503210.2503244(1-12)Online publication date: 17-Nov-2013

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media