Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-662-49122-5_13guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Method for Invariant Generation for Polynomial Continuous Systems

Published: 17 January 2016 Publication History

Abstract

This paper presents a method for generating semi-algebraic invariants for systems governed by non-linear polynomial ordinary differential equations under semi-algebraic evolution constraints. Based on the notion of discrete abstraction, our method eliminates unsoundness and unnecessary coarseness found in existing approaches for computing abstractions for non-linear continuous systems and is able to construct invariants with intricate boolean structure, in contrast to invariants typically generated using template-based methods. In order to tackle the state explosion problem associated with discrete abstraction, we present invariant generation algorithms that exploit sound proof rules for safety verification, such as differential cut$${\text {DC}}$$, and a new proof rule that we call differential divide-and-conquer$${\text {DDC}}$$, which splits the verification problem into smaller sub-problems. The resulting invariant generation method is observed to be much more scalable and efficient than the naïve approach, exhibiting orders of magnitude performance improvement on many of the problems.

References

[1]
Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. eds. HS 1991 and HS 1992. LNCS, vol. 736, pp. 209---229. Springer, Heidelberg 1993
[2]
Alur, R., Dang, T., Ivană ić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. eds. HSCC 2003. LNCS, vol. 2623, pp. 4---19. Springer, Heidelberg 2003
[3]
Alur, R., Dang, T., Ivană ić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 51, 152---199 2006
[4]
Arrowsmith, D., Place, C.: Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour. Chapman & Hall, London 1992
[5]
Bhatia, N.P., Szeg, G.P.: Stability Theory of Dynamical Systems. Springer, Heidelberg 1970
[6]
Blanchini, F.: Set invariance in control. Automatica 3511, 1747---1767 1999
[7]
Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006
[8]
Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. eds. TACAS 2014 ETAPS. LNCS, vol. 8413, pp. 279---294. Springer, Heidelberg 2014
[9]
Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking differential invariance of algebraic sets. In: D'Souza, D., Lal, A., Larsen, K.G. eds. VMCAI 2015. LNCS, vol. 8931, pp. 431---448. Springer, Heidelberg 2015
[10]
Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced series in nonlinear dynamics. World Scientific, Singapore 2001
[11]
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. eds. CAV 2008. LNCS, vol. 5123, pp. 190---203. Springer, Heidelberg 2008
[12]
Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM Rev. 53, 249---272 1963
[13]
Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278---292. IEEE Computer Society Press 1996
[14]
Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. eds. EMSOFT, pp. 97---106. ACM 2011
[15]
Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems by variable transformation. In: BjØrner, N., Boer, F. eds. FM 2015. LNCS, vol. 9109, pp. 360---377. Springer, Heidelberg 2015
[16]
Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. eds. SAS 2010. LNCS, vol. 6337, pp. 373---389. Springer, Heidelberg 2010
[17]
Papachristodoulou, A., Prajna, S.: Analysis of non-polynomial systems using the sum of squares decomposition. In: Henrion, D., Garulli, A. eds. Positive Polynomials in Control. Lecture Notes in Control and Information Science, vol. 312, pp. 23---43. Springer, Berlin 2005
[18]
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 412, 143---189 2008
[19]
Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 201, 309---352 2010
[20]
Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541---550. IEEE 2012
[21]
Platzer, A.: The structure of differential invariants and differential cut elimination. LMCS 84, 1---38 2012
[22]
Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. eds. CAV 2008. LNCS, vol. 5123, pp. 176---189. Springer, Heidelberg 2008
[23]
Powers, J.E.: Elimination of special functions from differential equations. Commun. ACM 23, 3---4 1959
[24]
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. eds. HSCC 2004. LNCS, vol. 2993, pp. 477---492. Springer, Heidelberg 2004
[25]
Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst., vol. 61, Febuary 2007
[26]
Richardson, D.: Some undecidable problems involving elementary functions of a real variable. J. Symb. Log. 334, 514---520 1968
[27]
Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC, pp. 221---230 2010
[28]
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. FMSD 321, 25---55 2008
[29]
Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. eds. CAV 2011. LNCS, vol. 6806, pp. 686---702. Springer, Heidelberg 2011
[30]
Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci. 871, 83---115 1987
[31]
Schlomiuk, D.: Algebraic and geometric aspects of the theory of polynomial vector fields. In: Schlomiuk, D. ed. Bifurcations and Periodic Orbits of Vector Fields. NATO ASI Series, vol. 408, pp. 429---467. Springer, Heidelberg 1993
[32]
Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Am. Math. Soci. 3382, 799---841 1993
[33]
Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, New York 1994
[34]
Stursberg, O., Kowalewski, S., Hoffmann, I., Preuβig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. eds. HS 1996. LNCS, vol. 1273. Springer, Heidelberg 1997
[35]
Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soci. 59, 91---93 1951
[36]
Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. eds. HSCC 2002. LNCS, vol. 2289, p. 465. Springer, Heidelberg 2002
[37]
Tiwari, A.: Abstractions for hybrid systems. FMSD 321, 57---83 2008
[38]
Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. eds. HSCC 2008. LNCS, vol. 4981, pp. 658---661. Springer, Heidelberg 2008
[39]
Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. eds. HSCC 2004. LNCS, vol. 2993, pp. 600---614. Springer, Heidelberg 2004
[40]
Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE Trans. Autom. Control 5810, 2508---2521 2013
[41]
Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, 2nd edn. Springer, New York 2003
[42]
Wu, Z.: Tangent cone and contingent cone to the intersection of two closed sets. Nonlinear Anal.: Theor., Methods Appl. 735, 1203---1220 2010
[43]
Zaki, M.H., Tahar, S., Bois, G.: A symbolic approach for the safety verification of continuous systems. In: Proceedings of the International Conference on Computational Sciences, pp. 93---100 2007
[44]
Zhao, H., Zhan, N., Kapur, D.: Synthesizing switching controllers for hybrid systems by generating invariants. In: Liu, Z., Woodcock, J., Zhu, H. eds. Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 354---373. Springer, Heidelberg 2013

Cited By

View all
  • (2022)Verifying Neural Network Controlled Systems Using Neural NetworksProceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control10.1145/3501710.3519511(1-11)Online publication date: 4-May-2022
  • (2022)Characterizing positively invariant setsJournal of Symbolic Computation10.1016/j.jsc.2022.01.004113:C(1-28)Online publication date: 1-Nov-2022
  • (2021)Synthesizing ReLU neural networks with two hidden layers as barrier certificates for hybrid systemsProceedings of the 24th International Conference on Hybrid Systems: Computation and Control10.1145/3447928.3456638(1-11)Online publication date: 19-May-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
VMCAI 2016: Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract Interpretation - Volume 9583
January 2016
534 pages
ISBN:9783662491218

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 17 January 2016

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Verifying Neural Network Controlled Systems Using Neural NetworksProceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control10.1145/3501710.3519511(1-11)Online publication date: 4-May-2022
  • (2022)Characterizing positively invariant setsJournal of Symbolic Computation10.1016/j.jsc.2022.01.004113:C(1-28)Online publication date: 1-Nov-2022
  • (2021)Synthesizing ReLU neural networks with two hidden layers as barrier certificates for hybrid systemsProceedings of the 24th International Conference on Hybrid Systems: Computation and Control10.1145/3447928.3456638(1-11)Online publication date: 19-May-2021
  • (2021)Formal verification of semi-algebraic sets and real analytic functionsProceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3437992.3439933(278-290)Online publication date: 17-Jan-2021
  • (2019)Robust invariant sets generation for state-constrained perturbed polynomial systemsProceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control10.1145/3302504.3311810(128-137)Online publication date: 16-Apr-2019
  • (2019)Pegasus: A Framework for Sound Continuous Invariant GenerationFormal Methods – The Next 30 Years10.1007/978-3-030-30942-8_10(138-157)Online publication date: 7-Oct-2019
  • (2019)Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with UncertaintyFormal Modeling and Analysis of Timed Systems10.1007/978-3-030-29662-9_8(123-141)Online publication date: 27-Aug-2019
  • (2018)Algorithms for exact and approximate linear abstractions of polynomial continuous systemsProceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)10.1145/3178126.3178137(207-216)Online publication date: 11-Apr-2018
  • (2017)Formal verification of obstacle avoidance and navigation of ground robotsInternational Journal of Robotics Research10.1177/027836491773354936:12(1312-1340)Online publication date: 1-Oct-2017
  • (2017)Probabilistic Safety Verification of Stochastic Hybrid Systems Using Barrier CertificatesACM Transactions on Embedded Computing Systems10.1145/312650816:5s(1-19)Online publication date: 27-Sep-2017
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media