Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-662-54580-5_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Maximizing the Conditional Expected Reward for Reaching the Goal

Published: 22 April 2017 Publication History

Abstract

The paper addresses the problem of computing maximal conditional expected accumulated rewards until reaching a target state briefly called maximal conditional expectations in finite-state Markov decision processes where the condition is given as a reachability constraint. Conditional expectations of this type can, e.g., stand for the maximal expected termination time of probabilistic programs with non-determinism, under the condition that the program eventually terminates, or for the worst-case expected penalty to be paid, assuming that at least three deadlines are missed. The main results of the paper are i a polynomial-time algorithm to check the finiteness of maximal conditional expectations, ii PSPACE-completeness for the threshold problem in acyclic Markov decision processes where the task is to check whether the maximal conditional expectation exceeds a given threshold, iii a pseudo-polynomial-time algorithm for the threshold problem in the general cyclic case, and iv an exponential-time algorithm for computing the maximal conditional expectation and an optimal scheduler.

References

[1]
Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods Comput. Sci. 34 2007
[2]
Acerbi, C., Tasche, D.: Expected shortfall: a natural coherent alternative to value at risk. Econ. notes 312, 379---388 2002
[3]
Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On the information leakage of differentially-private mechanisms. J. Comput. Secur. 234, 427---469 2015
[4]
Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Axioms for information leakage. In: Proceedings of Computer Security Foundations Symposium CSF, pp. 77---92. IEEE Computer Society 2016
[5]
Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proceedings of Computer Security Foundations Symposium CSF, pp. 265---279. IEEE Computer Society 2012
[6]
Andrés, M.E.: Quantitative Analysis of Information Leakage in Probabilistic and Nondeterministic Systems. Ph.D. thesis, UB Nijmegen 2011
[7]
Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in probabilistic concurrent systems. Theoret. Comput. Sci. 41228, 3072---3089 2011
[8]
Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. eds. TACAS 2008. LNCS, vol. 4963, pp. 157---172. Springer, Heidelberg 2008.
[9]
Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic model checking for energy-utility analysis. In: Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. eds. Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 96---123. Springer, Heidelberg 2014.
[10]
Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge 2008
[11]
Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. eds. TACAS 2014. LNCS, vol. 8413, pp. 515---530. Springer, Heidelberg 2014.
[12]
Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: Proceedings of Computer Science Logic/Logic in Computer Science CSL-LICS, pp. 11:1---11:10. ACM 2014
[13]
Baier, C., Klein, J., Klüppelholz, S. Wunderlich, S.: Maximizing the conditional expected reward for reaching the goal extended version. arXiv:1701.05389 2017
[14]
Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic invariants via Doob's decomposition. In: Chaudhuri, S., Farzan, A. eds. CAV 2016. LNCS, vol. 9779, pp. 43---61. Springer, Heidelberg 2016.
[15]
Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 163, 580---595 1991
[16]
Bertsekas, D.P., Yu, H.: Stochastic path problems under weak conditions. Technical report, M.I.T. Cambridge, Report LIDS 2909 2016
[17]
Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. In: Proceedings of Logic in Computer Science LICS, pp. 43---52. IEEE Computer Society 2011
[18]
Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-payoff objectives in Markov decision processes. Logical Methods Comput. Sci. 101 2014
[19]
Brázdil, T., Kuă era, A.: Computing the expected accumulated reward and gain for a subclass of infinite Markov Chains. In: Sarukkai, S., Sen, S. eds. FSTTCS 2005. LNCS, vol. 3821, pp. 372---383. Springer, Heidelberg 2005.
[20]
Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic programs through Positivstellensatz's. In: Chaudhuri, S., Farzan, A. eds. CAV 2016. LNCS, vol. 9779, pp. 3---22. Springer, Heidelberg 2016.
[21]
Chatzikokolakis, K., Palamidessi, C., Braun, C.: Compositional methods for information-hiding. Math. Struct. Comput. Sci. 266, 908---932 2016
[22]
Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. eds. CONCUR 1999. LNCS, vol. 1664, pp. 66---81. Springer, Heidelberg 1999.
[23]
Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Perform. Eval. 73, 110---132 2014
[24]
Jansen, N., Kaminski, B.L., Katoen, J., Olmedo, F., Gretz, F., McIver, A.: Conditioning in probabilistic programming. In: Proceedings of Mathematical Foundations of Programming Semantics MFPS, Electronic Notes Theoretical Computer Science, vol. 319, pp. 199---216 2015
[25]
Kallenberg, L.: Markov Decision Processes. Lecture Notes. University of Leiden, Leiden 2011
[26]
Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. eds. Correct System Design. LNCS, vol. 9360, pp. 15---32. Springer, Heidelberg 2015.
[27]
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. eds. CAV 2011. LNCS, vol. 6806, pp. 585---591. Springer, Heidelberg 2011.
[28]
PRISM model checker. http://www.prismmodelchecker.org/
[29]
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York 1994
[30]
Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path problem. In: D'Souza, D., Lal, A., Larsen, K.G. eds. VMCAI 2015. LNCS, vol. 8931, pp. 1---18. Springer, Heidelberg 2015.
[31]
Seber, G., Lee, A.: Linear Regression Analysis. Wiley Series in Probability and Statistics. Wiley, New York 2003
[32]
Uryasev, S.: Conditional value-at-risk: optimization algorithms and applications. In Proceedings of Computational Intelligence and Financial Engineering CIFEr, pp. 49---57. IEEE 2000

Cited By

View all
  • (2023)Bi-objective Lexicographic Optimization in Markov Decision Processes with Related ObjectivesAutomated Technology for Verification and Analysis10.1007/978-3-031-45329-8_10(203-223)Online publication date: 24-Oct-2023
  • (2023)Compositional Probabilistic Model Checking with String Diagrams of MDPsComputer Aided Verification10.1007/978-3-031-37709-9_3(40-61)Online publication date: 17-Jul-2023
  • (2019)Partial and Conditional Expectations in Markov Decision Processes with Integer WeightsFoundations of Software Science and Computation Structures10.1007/978-3-030-17127-8_25(436-452)Online publication date: 8-Apr-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings, Part II, of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 10206
April 2017
393 pages
ISBN:9783662545799
  • Editors:
  • Axel Legay,
  • Tiziana Margaria

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 April 2017

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Bi-objective Lexicographic Optimization in Markov Decision Processes with Related ObjectivesAutomated Technology for Verification and Analysis10.1007/978-3-031-45329-8_10(203-223)Online publication date: 24-Oct-2023
  • (2023)Compositional Probabilistic Model Checking with String Diagrams of MDPsComputer Aided Verification10.1007/978-3-031-37709-9_3(40-61)Online publication date: 17-Jul-2023
  • (2019)Partial and Conditional Expectations in Markov Decision Processes with Integer WeightsFoundations of Software Science and Computation Structures10.1007/978-3-030-17127-8_25(436-452)Online publication date: 8-Apr-2019
  • (2018)From verification to synthesis under cost-utility constraintsACM SIGLOG News10.1145/3292048.32920525:4(26-46)Online publication date: 12-Nov-2018
  • (2018)Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision ProcessesProceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3209108.3209176(609-618)Online publication date: 9-Jul-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media