Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Cutting hyperplanes for divide-and-conquer

Published: 01 December 1993 Publication History

Abstract

Givenn hyperplanes inEd, a (1/r)-cutting is a collection of simplices with disjoint interiors, which together coverEd and such that the interior of each simplex intersects at mostn/r hyperplanes. We present a deterministic algorithm for computing a (1/r)-cutting ofO(rd) size inO(nrd 1) time. If we require the incidences between the hyperplanes and the simplices of the cutting to be provided, then the algorithm is optimal. Our method is based on a hierarchical construction of cuttings, which also provides a simple optimal data structure for locating a point in an arrangement of hyperplanes. We mention several other applications of our result, e.g., counting segment intersections, Hopcroft's line/point incidence problem, linear programming in fixed dimension.

References

[1]
Agarwal, P. K. Partitioning arrangements of lines, I: An efficient deterministic algorithm,Discrete Comput. Geom.5 (1990), 449---483.
[2]
Agarwal, P. K. Partitioning arrangements of lines, II: Applications,Discrete Comput. Geom.5 (1990), 533---573.
[3]
Chazelle, B. An optimal convex hull algorithm in any fixed dimension,Discrete Comput. Geom., to appear.
[4]
Chazelle, B., Edelsbrunner, H., Guibas, J. J., Sharir, M. A singly-exponential stratification scheme for real semi-algebraic varieties and its applications,Theoret. Comput. Sci.84 (1991), 77---105.
[5]
Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry,Combinatorica10 (1990), 229---249.
[6]
Chazelle, B., Friedman, J. Point location among hyperplanes and unidirectional ray-shooting, Technical Report CS-TR-333-91, Princeton University, June 1991.
[7]
Clarkson, K. L. Linear programming inO(n3d2) time,Inform. Process. Lett.22 (1986), 21---24.
[8]
Clarkson, K. L. New applications of random sampling in computational geometry,Discrete Comput. Geom.2 (1987), 195---222.
[9]
Clarkson, K. L. A randomized algorithm for closest-point queries,SIAM J. Comput.17 (1988), 830---847.
[10]
Clarkson, K. L. A Las Vegas algorithm for linear programming when the dimension is small,Proc. 29th Annu. Symp. on Foundations of Computer Science, 1988, pp. 452---456.
[11]
Clarkson, K. L., Shor, P. W. Applications of random sampling in computational geometry, II,Discrete Comput. Geom.4 (1989), 387---421.
[12]
Dyer, M. E. Linear time algorithms for two- and three-variable linear programs,SIAM J. Comput.13 (1984), 31---45.
[13]
Edelsbrunner, H.Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[14]
Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E. Implicitly representing arrangements of lines or segments,Discrete Comput. Geom.4 (1989), 433---466.
[15]
Edelsbrunner, H., Mücke, P. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms,ACM Trans. Comput. Graphics9 (1990), 66---104.
[16]
Guibas, L. J., Overmars, M., Sharir, M. Counting and reporting intersections in arrangements of line segments, Technical Report 434, Dept. Computer Science, New York University, 1989.
[17]
Haussler, D., Welzl, E. Epsilon-nets and simplex range queries,Discrete Comput. Geom.2 (1987), 127---151.
[18]
Matoušek, J. Construction of¿-nets,Discrete Comput. Geom.5 (1990), 427---448.
[19]
Matoušek, J. Cutting hyperplane arrangements,Discrete Comput. Geom.6 (1991), 385---406.
[20]
Matoušek, J. Approximations and optimal geometric divide-and-conquer,Proc. 23rd Annu. ACM Symp. on Theory of Computing, 1991, pp. 505---511.
[21]
Matoušek, J. Efficient partition trees,Proc. 7th Annu. ACM Symp. on Computational Geometry, 1991, pp. 1---9.
[22]
Matoušek, J. Private communication, 1991.
[23]
Matoušek, J. Range searching with efficient hierarchical cuttings, Technical Report KAM Series, Dept. Applied Mathematics, Charles University, 1992.
[24]
Megiddo, N. Linear programming in linear time when the dimension is fixed,J. Assoc. Comput. Mach.31 (1984), 114---127.
[25]
Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing integer programs,J. Comput. System Sci.37 (1988), 130---143.
[26]
Seidel, R. Linear programming and convex hulls made easy,Proc. 6th Annu. ACM Symp. on Computational Geometry, 1990, pp. 211---215.
[27]
Spencer, J.Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, Philadelphia, PA, 1987.
[28]
Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl.16 (1971), 264---280.
[29]
Yap, C. K. A geometric consistency theorem for a symbolic perturbation scheme,Proc. 4th Annu. ACM Symp. on Computational Geometry, 1988, pp. 134---142.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 9, Issue 2
February 1993
102 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1993

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Line Intersection Searching Amid Unit Balls in 3-SpaceAlgorithmica10.1007/s00453-024-01284-787:2(223-241)Online publication date: 1-Feb-2025
  • (2024)Hopcroft’s Problem, Log* Shaving, Two-dimensional Fractional Cascading, and Decision TreesACM Transactions on Algorithms10.1145/359135720:3(1-27)Online publication date: 21-Jun-2024
  • (2024)On the Zarankiewicz Problem for Graphs with Bounded VC-DimensionCombinatorica10.1007/s00493-024-00095-244:4(839-848)Online publication date: 1-Aug-2024
  • (2024)Evasive Sets, Covering by Subspaces, and Point-Hyperplane IncidencesDiscrete & Computational Geometry10.1007/s00454-023-00601-172:3(1333-1347)Online publication date: 1-Oct-2024
  • (2024)Nearly Time-Optimal Kernelization Algorithms for the Line-Cover Problem with Big DataAlgorithmica10.1007/s00453-024-01231-686:8(2448-2478)Online publication date: 1-Aug-2024
  • (2024)Minimum-Width Double-Slabs and Widest Empty Slabs in High DimensionsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_20(303-317)Online publication date: 18-Mar-2024
  • (2023)Lower Bounds for Semialgebraic Range Searching and Stabbing ProblemsJournal of the ACM10.1145/357857470:2(1-26)Online publication date: 18-Apr-2023
  • (2022)Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets: Collinearity Testing and Related ProblemsDiscrete & Computational Geometry10.1007/s00454-022-00437-168:4(997-1048)Online publication date: 1-Dec-2022
  • (2021)Near-optimal randomized algorithms for selection in totally monotone matricesProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458153(1483-1495)Online publication date: 10-Jan-2021
  • (2021)On β-Plurality Points in Spatial Voting GamesACM Transactions on Algorithms10.1145/345909717:3(1-21)Online publication date: 15-Jul-2021
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media