Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Constructing arrangements optimally in parallel

Published: 01 December 1993 Publication History

Abstract

We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2n) time usingO(n2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(nd) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.

References

[1]
P. K. Agarwal, Partitioning Arrangements of Lines, II: Applications,Discrete Comput. Geom.5 (1990), 533---573.
[2]
P. K. Agarwal, Geometric Partitioning and Its Applications, Technical Report CS-1991-27, Dept. of Computer Science, Duke University, 1991.
[3]
A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, and C. Yap, Parallel Computational Geometry,Algorithmica3 (1988), 293---328.
[4]
A. Aggarwal and J. Wein,Computational Geometry, M.I.T. Report MIT/LCS/RSS 3, 1988.
[5]
R. Anderson, P. Beame, and E. Brisson, Parallel Algorithms for Arrangements,Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures, 1990, pp. 298---306. (An expanded version of this paper is available as Technical Report 89-12-08, Dept. of Computer Science and Engineering, University of Washington, 1989.)
[6]
R. J. Anderson and G. L. Miller, Deterministic Parallel List Ranking,Proc. 3rd Aegean Workshop on Computing, AWOC '88, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 81---90.
[7]
M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms,SIAM J. Comput.18 (1989), 499---532.
[8]
J. L. Bentley and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections,IEEE Trans. Comput.28 (1979), 643---647.
[9]
L. J. Bentley and D. Wood, An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles,IEEE Trans. Comput.29 (1980), 571---576.
[10]
G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared Memory Machines, Technical Report 86-769, Dept. of Computer Science, Cornell University, August 1986.
[11]
A. Borodin and J. E. Hopcroft, Routing, Merging, and Sorting on Parallel Models of Computation,J. Comput. System Sci.30 (1985), 130---145.
[12]
R. P. Brent, The Parallel Evaluation of General Arithmetic Expressions,J. Assoc. Comput. Mach.21 (1974), 201---206.
[13]
B. Chazelle, Reporting and Counting Segment Intersections,J. Comput. System Sci.32 (1986), 156---182.
[14]
B. Chazelle, An Optimal Convex Hull Algorithm and New Results on Cuttings,Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991, pp. 29---38.
[15]
B. Chazelle and H. Edelsbrunner, An Optimal Algorithm for Intersecting Line Segments in the Plane,J. Assoc. Comput. Mach.39 (1992), 1---54.
[16]
B. Chazelle, L. J. Guibas, and D. T. Lee, The Power of Geometric Duality,BIT25 (1985), 76---90.
[17]
A. Chow, Parallel Algorithms for Geometric Problems, Ph.D. thesis, Computer Science Dept., University of Illinois, 1980.
[18]
K. L. Clarkson, New Applications of Random Sampling in Computational Geometry,Discrete Comput. Geom.2 (1987), 195---222.
[19]
K. L. Clarkson, R. Cole, and R. E. Tarjan, Randomized Parallel Algorithms for Trapezoidal Diagrams,Internat. J. Comput. Geom. Appl.2 (1992), 117---134.
[20]
R. Cole, Parallel Merge Sort,SIAM J. Comput.17 (1988), 770---785.
[21]
R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro and Macro Techniques for Designing Parallel Algorithms,Proc. 18th ACM Symp. on Theory of Computing, 1986, pp. 206---219.
[22]
R. Cole and U. Vishkin, Approximate and Exact Parallel Scheduling with Applications to List, Tree and Graph Problems,Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986, pp. 478---491.
[23]
F. Dévai, Quadratic Bounds for Hidden-Line Elimination,Proc. 2nd ACM Symp. on Computational Geometry, 1986, pp. 269---275.
[24]
P. W. Dymon and S. A. Cook, Hardware Complexity and Parallel Computation,Proc. 21st IEEE Symp. on Foundations of Computer Science, 1980, pp. 360---372.
[25]
H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
[26]
H. Edelsbrunner and L. J. Guibas, Topologically Sweeping an Arrangement,J. Comput. System Sci.38 (1989), 165---194.
[27]
H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing Arrangements of Lines and Hyperplanes with Applications,SIAM J. Comput.15 (1986), 341---363.
[28]
M. T. Goodrich, Efficient Parallel Techniques for Computational Geometry, Ph.D. thesis, Dept. Computer Sciences, Purdue University, 1987.
[29]
M. T. Goodrich, Intersecting Line Segments in Parallel with an Output-Sensitive Number of Processors,SIAM J. Comput.20 (1991), 737---755.
[30]
M. T. Goodrich and S. R. Kosaraju, Sorting on a Parallel Pointer Machine with Applications to Set Expression Evaluation,Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 190---195.
[31]
T. Hagerup, H. Jung, and E. Welzl, Efficient Parallel Computation of Arrangement of Hyperplanes ind Dimensions,Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures, 1990, pp. 290---297.
[32]
D. Haussler and E. Welzl, ¿-Nets and Simplex Range Queries,Discrete Comput. Geom.2 (1987), 127---151.
[33]
J. JáJá,An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[34]
R. M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, inHandbook of Theoretical Computer Science, Vol. 1, J. Van Leeuwen, ed., MIT Press, Cambridge, MA, 1990, pp. 869---942.
[35]
C. P. Kruskal, Searching, Merging, and Sorting in Parallel Computation,IEEE Trans. Comput.32 (1983), 942---946.
[36]
C. P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix,Proc. 1985 Internat. Conf. on Parallel Processing, 1985, pp. 180---185.
[37]
R. E. Ladner and M. J. Fischer, Parallel Prefix Computation,J. Assoc. Comput. Mach.27 (1980), 831---838.
[38]
D. T. Lee and F. P. Preparata, Computational Geometry--A Survey,IEEE Trans. Comput.33 (1984), 872---1101.
[39]
J. Matoušek, Approximations and Optimal Geometric Divide-and-Conquer,Proc. 23rd ACM Symp. on Theory of Computing, 1991, pp. 505---511.
[40]
F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.
[41]
C. Rüb, Line Segment Intersection Reporting in Parallel,Algorithmica8 (1992), 119---144.
[42]
W. L. Ruzzo, On Uniform Circuit Complexity,J. Comput. System Sci.22 (1981), 365---383.
[43]
Y. Shiloach and U. Vishkin, Finding the Maximum, Merging, and Sorting in a Parallel Computation Model,J. Algorithms2 (1981), 88---102.
[44]
J. C. Wyllie, The Complexity of Parallel Computation, Ph.D. thesis, Technical Report 79-387, Dept. of Computer Science, Cornell University, 1979.

Cited By

View all
  • (2021)Windowing queries using Minkowski sum and their extension to MapReduceThe Journal of Supercomputing10.1007/s11227-020-03299-777:1(936-972)Online publication date: 1-Jan-2021
  • (2011)An optimal hidden-surface algorithm and its parallelizationProceedings of the 2011 international conference on Computational science and its applications - Volume Part III10.5555/2029312.2029314(17-29)Online publication date: 20-Jun-2011
  • (1994)Computational geometryProceedings of the twenty-sixth annual ACM symposium on Theory of Computing10.1145/195058.195110(75-94)Online publication date: 23-May-1994

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 9, Issue 4
April 1993
92 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1993

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Windowing queries using Minkowski sum and their extension to MapReduceThe Journal of Supercomputing10.1007/s11227-020-03299-777:1(936-972)Online publication date: 1-Jan-2021
  • (2011)An optimal hidden-surface algorithm and its parallelizationProceedings of the 2011 international conference on Computational science and its applications - Volume Part III10.5555/2029312.2029314(17-29)Online publication date: 20-Jun-2011
  • (1994)Computational geometryProceedings of the twenty-sixth annual ACM symposium on Theory of Computing10.1145/195058.195110(75-94)Online publication date: 23-May-1994

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media