Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Computing the Ehrhart polynomial of a convex lattice polytope

Published: 01 December 1994 Publication History

Abstract

We prove that computation of any fixed number of highest coefficients of the Ehrhart polynomial of an integral polytope can be reduced in polynomial time to computation of the volumes of faces.

References

[1]
A. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope, Preprint, TRITA/MAT-92-0036, Royal Institute of Technology, Stockholm, 1992.
[2]
A. I. Barvinok, A polynomial-time algorithm for counting integral points in polyhedra when the dimension is fixed,Proceedings of 34th Symposium on the Foundations of Computer Science (FOCS '93), IEEE Computer Society Press, New York, 1993, pp. 566---572.
[3]
W. Cook, M. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra,Combinatorica12 (1992), 27---37.
[4]
M. Dyer and A. M. Frieze, On the complexity of computing the volume of a polyhedron,SIAM J. Comput.17(5) (1988), 967---974.
[5]
W. Fulton,Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.
[6]
M. Grötschel, L. Lovasz, and A. Schrijver,Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, Vol. 2, Springer-Verlag, Berlin, 1988.
[7]
R. Kannan, Minkowski's convex body theorem and integer programming.Math. Oper. Res.,12 (1987), 415---440.
[8]
J. Lawrence, Polytope volume computation,Math. Comp.,57(195) (1991), 259---271.
[9]
I. G. Macdonald, Polynomials associated with finite cell complexes.J. London Math. Soc. (2),4 (1971), 181---192.
[10]
R. Morelli, Pick's theorem and the Todd class of a toric variety.Adv. in Math.,100(2) (1993), 183---231.
[11]
J. E. Pommersheim, Toric varieties, lattice points and Dedekind sums.Math. Ann.,295 (1993), 1---24.
[12]
R. P. Stanley,Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole, Monterey, CA, 1986.

Cited By

View all
  • (2024)Approximate integer solution counts over linear arithmetic constraintsProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i8.28640(8022-8029)Online publication date: 20-Feb-2024
  • (2023)An Envelope Operator for Full Convexity to Define Polyhedral Models in Digital SpacesJournal of Mathematical Imaging and Vision10.1007/s10851-023-01155-w65:5(754-769)Online publication date: 17-Jul-2023
  • (2022)Computing Optimized Path Integrals for Knapsack FeasibilityINFORMS Journal on Computing10.1287/ijoc.2021.114234:4(2163-2176)Online publication date: 1-Jul-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 12, Issue 1
December 1994
160 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1994

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Approximate integer solution counts over linear arithmetic constraintsProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i8.28640(8022-8029)Online publication date: 20-Feb-2024
  • (2023)An Envelope Operator for Full Convexity to Define Polyhedral Models in Digital SpacesJournal of Mathematical Imaging and Vision10.1007/s10851-023-01155-w65:5(754-769)Online publication date: 17-Jul-2023
  • (2022)Computing Optimized Path Integrals for Knapsack FeasibilityINFORMS Journal on Computing10.1287/ijoc.2021.114234:4(2163-2176)Online publication date: 1-Jul-2022
  • (2022)An Alternative Definition for Digital ConvexityJournal of Mathematical Imaging and Vision10.1007/s10851-022-01076-064:7(718-735)Online publication date: 1-Sep-2022
  • (2021)An Alternative Definition for Digital ConvexityDiscrete Geometry and Mathematical Morphology10.1007/978-3-030-76657-3_19(269-282)Online publication date: 24-May-2021
  • (2019)Approximating integer solution counting via space quantification for linear constraintsProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367243.3367274(1697-1703)Online publication date: 10-Aug-2019
  • (2019)Efficient Algorithms to Test Digital ConvexityDiscrete Geometry for Computer Imagery10.1007/978-3-030-14085-4_32(409-419)Online publication date: 26-Mar-2019
  • (2017)Feedback Delay NetworksIEEE/ACM Transactions on Audio, Speech and Language Processing10.1109/TASLP.2016.263502725:2(374-383)Online publication date: 1-Feb-2017
  • (2017)Difference dimension quasi-polynomialsAdvances in Applied Mathematics10.1016/j.aam.2017.02.00389:C(1-17)Online publication date: 1-Aug-2017
  • (2015)On Characterizing the Data Access Complexity of ProgramsACM SIGPLAN Notices10.1145/2775051.267701050:1(567-580)Online publication date: 14-Jan-2015
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media