Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Hard examples for the bounded depth Frege proof system

Published: 01 March 2003 Publication History

Abstract

We prove exponential lower bounds on the size of a bounded depth Frege proof of a Tseitin graph-based contradiction, whenever the underlying graph is an expander. This is the first example of a contradiction, naturally formalized as a 3-CNF, that has no short bounded depth Frege proofs. Previously, lower bounds of this type were known only for the pigeonhole principle and for Tseitin contradictions based on complete graphs.Our proof is a novel reduction of a Tseitin formula of an expander graph to the pigeonhole principle, in a manner resembling that done by Fu and Urquhart for complete graphs.In the proof we introduce a general method for removing extension variables without significantly increasing the proof size, which may be interesting in its own right.

References

[1]
M. AJTAI (1988). The complexity of the pigeonhole principle. In Proc. 29th FOCS, 346-355.
[2]
M. ALEKHNOVICH & A. RAZBOROV (2000). Lower bounds for the polynomial calculus: non-binomial case. Manuscript, available at http://genesis.mi.ras.ru/~razborov /misha.ps.
[3]
N. ALON, P. SEYMOUR & R. THOMAS (1990). A separator theorem for graphs with an excluded minor and its applications. In Proc. 22nd STOC, 293-299.
[4]
N. ALON, J. H. SPENCER & P. ERDÖÖS (1992). The Probabilistic Method. Wiley.
[5]
P. BEAME & T. PITASSI (1993). An exponential separation between the matching principle and the pigeonhole principle. In 8th Annual IEEE Symposium on Logic in Computer Science (Montreal), 308-319.
[6]
S. BELLANTONI, W. PITASSI & A. URQUHART (1992). Approximation and smalldepth Frege proofs. SIAM J. Comput.21, 1161-1179.
[7]
E. BEN-SASSON & R. IMPAGLIAZZO (1999). Random CNF's are hard for the polynomial calculus. In Proc. 40th IEEE FOCS, 415-421.
[8]
E. BEN-SASSON & A. WIGDERSON (1999). Short proofs are narrow--resolution made simple. In Proc. 31st ACM STOC, 517-526.
[9]
S. BUSS, D. GRIGORIEV, R. IMPAGLIAZZO & T. PITASSI (1999). Linear gaps between degrees for the polynomial calculus modulo distinct primes. In Proc. 31st ACM STOC, 547-556.
[10]
S. Buss, R. IMPAGLIAZZO, J. KRAJÍCEK, P. PUDLÁK, A. A. RAZBOROV & J. SGALL (1996/1997). Proof complexity in algebraic systems and bounded depth Frege systems with modular counting. Comput. Complexity6, 256-298.
[11]
V. CHVÁTAL & E. SZEMERÉÉDI (1988). Many hard examples for resolution. J. Assoc. Comput. Mach.35, 759-768.
[12]
S. A. COOK (1971). The complexity of theorem-proving procedures. In Proc. 3rd IEEE Sympos. on the Foundations of Computer Science, 151-158.
[13]
S. A. COOK & R. RECKHOW (1979). The relative efficiency of propositional proof systems. J. Symbolic Logic44, 35-50.
[14]
X. FU & A. URQUHART (1996). Simplified lower bounds for propositional proofs. Notre Dame J. Formal Logic37, 523-544.
[15]
D. GRIGORIEV (1998). Tseitin's tautologies and lower bounds for Nullstellensatz proofs. In Proc. 39th IEEE FOCS, 648-652.
[16]
A. HAKEN (1985). The intractibility of resolution. Theoret. Comput. Sci.39, 297-308.
[17]
A. HÅSTAD (1989). Almost optimal lower bounds for small depth circuits. In Advances in Computer Research, vol 5. Randomness and Computation, JAI Press, Greenwich, CT, 143-170.
[18]
J. KRAJÍCEK, P. PUDLÁK & A. WOODS (1995). Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. In Random Structures Algorithms7, 15-39.
[19]
R. J. LIPTON & R. E. TARJAN (1979). A separator theorem for planar graphs. SIAM J. Appl. Math.36, 177-189.
[20]
T. PITASSI, P. BEAME & R. IMPAGLIAZZO (1993). Exponential lower bounds for the pigeonhole principle. Comput. Complexity3, 97-140.
[21]
G. S. TSEITIN (1970). On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and Mathematical Logic, Part 2, A. O. Slisenko (ed.), 115-125. Reprinted in Automation of Reasoning, vol. 2, J. Siekmann and G. Wrightson (eds.), Springer, New York, 1983, 466-483.
[22]
A. URQUHART (1987). Hard examples for resolution. J. Assoc. Comput. Mach.34, 209-219.
[23]
A. URQUHART (1995). The complexity of propositional proofs. Bull. Symbolic Logic1, 425-467.

Cited By

View all
  • (2024)From Quantifier Depth to Quantifier Number: Separating Structures with k VariablesProceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3661814.3662125(1-14)Online publication date: 8-Jul-2024
  • (2023)Near-optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement StepsJournal of the ACM10.1145/319525770:5(1-32)Online publication date: 11-Oct-2023
  • (2020)On Small-depth Frege Proofs for Tseitin for GridsJournal of the ACM10.1145/342560668:1(1-31)Online publication date: 17-Nov-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computational Complexity
Computational Complexity  Volume 11, Issue 3/4
March 2003
80 pages

Publisher

Birkhauser Verlag

Switzerland

Publication History

Published: 01 March 2003

Author Tags

  1. Tseitin contradictions
  2. automated theorem proving
  3. bounded depth Frege
  4. co-NP completeness
  5. proof complexity
  6. propositional proofs
  7. resolution

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)From Quantifier Depth to Quantifier Number: Separating Structures with k VariablesProceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3661814.3662125(1-14)Online publication date: 8-Jul-2024
  • (2023)Near-optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement StepsJournal of the ACM10.1145/319525770:5(1-32)Online publication date: 11-Oct-2023
  • (2020)On Small-depth Frege Proofs for Tseitin for GridsJournal of the ACM10.1145/342560668:1(1-31)Online publication date: 17-Nov-2020
  • (2019)Notes on Resolution over Linear EquationsComputer Science – Theory and Applications10.1007/978-3-030-19955-5_15(168-179)Online publication date: 1-Jul-2019
  • (2016)Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler--Leman Refinement StepsProceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/2933575.2934560(267-276)Online publication date: 5-Jul-2016
  • (2013)The proof-search problem between bounded-width resolution and bounded-degree semi-algebraic proofsProceedings of the 16th international conference on Theory and Applications of Satisfiability Testing10.1007/978-3-642-39071-5_1(1-17)Online publication date: 8-Jul-2013
  • (2006)Constant-depth Frege systems with counting axioms polynomially simulate Nullstellensatz refutationsACM Transactions on Computational Logic (TOCL)10.1145/1131313.11313147:2(199-218)Online publication date: 1-Apr-2006

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media