Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Low-degree test with polynomially small error

Published: 01 September 2017 Publication History

Abstract

A long line of work in Theoretical Computer Science shows that a function is close to a low-degree polynomial iff it is locally close to a low-degree polynomial. This is known as low-degree testing and is the core of the algebraic approach to construction of PCP. We obtain a low-degree test whose error, i.e., the probability it accepts a function that does not correspond to a low-degree polynomial, is polynomially smaller than existing low-degree tests. A key tool in our analysis is an analysis of the sampling properties of the incidence graph of degree-k curves and kź-tuples of points in a finite space $${\mathbb{F}^m}$$Fm. We show that the Sliding Scale Conjecture in PCP, namely the conjecture that there are PCP verifiers whose error is exponentially small in their randomness, would follow from a derandomization of our low-degree test.

References

[1]
N. Alon, J. Bruck, J. Naor, M. Naor & R. Roth (1992). Construction of asymptotically good, low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38, 509-516.
[2]
S. Arora, C. Lund, R. Motwani, M. Sudan & M. Szegedy (1998). Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501-555.
[3]
S. Arora & S. Safra (1998). Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1), 70-122.
[4]
S. Arora & M. Sudan (2003). Improved low-degree testing and its Applications. Combinatorica 23(3), 365-426.
[5]
L. Babai, L. Fortnow, L. A. Levin & M. Szegedy (1991a). Checking computations in polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing, 21-32.
[6]
L. Babai, L. Fortnow & C. Lund (1991b). Nondeterministic Exponential Time Has Two-Prover Interactive Protocols. Computational Complexity 1, 3-40.
[7]
M. Bellare, S. Goldwasser, C. Lund & A. Russell (1993). Efficient probabilistically checkable proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Computing, 294-304.
[8]
E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan & S. Vadhan (2006). Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing 36(4), 889-974.
[9]
E. Ben-Sasson, M. Sudan, S. P. Vadhan & A. Wigderson (2003). Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In Proc. 34th ACM Symp. on Theory of Computing, 612- 621.
[10]
M. Braverman & A. Garg (2015). Small Value Parallel Repetition for General Games. In Proc. 48th ACM Symp. on Theory of Computing, 335-340.
[11]
M. R. Capalbo, O. Reingold, S. P. Vadhan & A. Wigderson (2002). Randomness Conductors and Constant-Degree Lossless Expanders. In Proc. 34th ACM Symp. on Theory of Computing, 659-668.
[12]
I. Dinur, E. Fischer, G. Kindler, R. Raz & S. Safra (2011). PCP Characterizations of NP: Toward a Polynomially-Small Error-Probability. Computational Complexity 20(3), 413-504.
[13]
I. Dinur & E. Goldenberg (2008). Locally Testing Direct Product in the Low Error Range. In Proc. 49th IEEE Symp. on Foundations of Computer Science, 613-622.
[14]
I. Dinur & P. Harsha (2009). Composition of Low-Error 2-Query PCPs Using Decodable PCPs. In Proc. 50th IEEE Symp. on Foundations of Computer Science, 472-481.
[15]
I. Dinur & O. Reingold (2006). Assignment Testers: Towards a Combinatorial Proof of the PCP Theorem. SIAM Journal on Computing 36(4), 975-1024.
[16]
I. Dinur & D. Steurer (2014a). Analytical Approach to Parallel Repetition. In Proc. 47th ACM Symp. on Theory of Computing, 624- 633.
[17]
I. Dinur & D. Steurer (2014b). Direct Product Testing. In Computational Complexity Conference, 188-196.
[18]
U. Feige & J. Kilian (1995). Impossibility results for recycling random bits in two-prover proof systems. In Proc. 27th ACM Symp. on Theory of Computing, 457-468.
[19]
P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan & A. Wigderson (1991). Self-Testing/Correcting for Polynomials and for Approximate Functions. In Proc. 23rd ACM Symp. on Theory of Computing, 32-42.
[20]
O. Goldreich & S. Safra (2000). A Combinatorial Consistency Lemma with Application to Proving the PCP Theorem. SIAM J. Comput. 29(4), 1132-1154.
[21]
R. Impagliazzo, V. Kabanets & A. Wigderson (2012). New Direct-Product Testers and 2-Query PCPs. SIAM Journal on Computing 41(6), 1722-1768.
[22]
S. M. Johnson (1962). A new upper bound for error-correcting codes. IRE Transactions on Information Theory 203-207.
[23]
D. Moshkovitz (2011). Lecture notes in Probabilistically Checkable Proofs. Available on the author's webpage.
[24]
D. Moshkovitz (2014a). An Approach To The Sliding Scale Conjecture Via Parallel Repetition For Low Degree Testing. Technical Report 30, ECCC.
[25]
D. Moshkovitz (2014b). Parallel Repetition From Fortification. In Proc. 55th IEEE Symp. on Foundations of Computer Science, 414-423.
[26]
D. Moshkovitz, G. Ramnarayan & H. Yuen (2015). A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, 42:3-42:29.
[27]
D. Moshkovitz & R. Raz (2008). Sub-Constant Error Low Degree Test of Almost-Linear Size. SIAM Journal on Computing 38(1), 140- 180.
[28]
D. Moshkovitz & R. Raz (2010). Two Query PCP with Sub-Constant Error. Journal of the ACM 57(29).
[29]
R. Raz & S. Safra (1997). A Sub-Constant Error-Probability Low-Degree Test and a Sub-Constant Error-Probability PCP Characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing, 475-484.
[30]
O. Reingold, S. P. Vadhan & A. Wigderson (2002). Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors. Annals of Mathematics 155(1), 157-187.
[31]
R. Rubinfeld & M. Sudan (1996). Robust Characterizations of Polynomials with Applications to Program Testing. SIAM Journal on Computing 25(2), 252-271.
[32]
M. Szegedy (1999). Many-Valued Logics and Holographic Proofs. In Automata, Languages and Programming, 26th International Colloquium, ICALP 2007. Lecture notes in Computer Science, J. Weidermann, P. van Emde Boas & M. Nielsen, editors, 676-686. Springer-Verlag.
[33]
A. Wigderson & D. Zuckerman (1993). Expanders that Beat the Eigenvalue Bound: Explicit Construction and Applications. Combinatorica 19, 245-251.
[34]
D. Zuckerman (1997). Randomness-optimal oblivious sampling. Random Structures and Algorithms 11(4), 345-367.

Cited By

View all
  • (2023)A High Dimensional Goldreich-Levin TheoremProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585224(1463-1474)Online publication date: 2-Jun-2023
  1. Low-degree test with polynomially small error

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Computational Complexity
    Computational Complexity  Volume 26, Issue 3
    September 2017
    230 pages

    Publisher

    Birkhauser Verlag

    Switzerland

    Publication History

    Published: 01 September 2017

    Author Tags

    1. 68Q17
    2. 68Q25
    3. Low-degree testing
    4. PCP
    5. Sliding Scale Conjecture
    6. direct product

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)A High Dimensional Goldreich-Levin TheoremProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585224(1463-1474)Online publication date: 2-Jun-2023

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media