Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

$$L^{2}$$L2-discretization error bounds for maps into Riemannian manifolds

Published: 01 June 2018 Publication History

Abstract

We study the approximation of functions that map a Euclidean domain $$\Omega \subset {\mathbb {R}}^{d}$$ΩźRd into an n-dimensional Riemannian manifold (M, g) minimizing an elliptic, semilinear energy in a function set $$H\subset W^{1,2}(\Omega,M)$$HźW1,2(Ω,M). The approximation is given by a restriction of the energy minimization problem to a family of conforming finite-dimensional approximations $$S_{h}\subset H$$ShźH. We provide a set of conditions on $$S_{h}$$Sh such that we can prove a priori $$W^{1,2}$$W1,2- and $$L^{2}$$L2-approximation error estimates comparable to standard Euclidean finite elements. This is done in an intrinsic framework, independently of embeddings of the manifold or the choice of coordinates.

References

[1]
Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708---1726 (1997)
[2]
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)
[3]
Bartels, S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43(1), 220---238 (2005)
[4]
Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput. 76(260), 1847---1859 (2007)
[5]
Casciaro, B., Francaviglia, M.: A new variational characterization of Jacobi fields along geodesics. Annali di Matematica pura ed applicata 172(4), 219---228 (1997)
[6]
Ciarlet, P .G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)
[7]
Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139---232 (2005)
[8]
Dobrowolski, M., Rannacher, R.: Finite element methods for nonlinear elliptic systems of second order. Math. Nachr. 94, 155---172 (1980)
[9]
Dziuk, G., Elliott, C.: $${L}^2$$L2-estimates for the evolving surface finite element method. Math. Comput. 82(281), 1---24 (2013)
[10]
Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262---292 (2007)
[11]
Dziuk, G., Elliott, C.M.: A fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50(5), 2677---2694 (2012)
[12]
Eichmair, M., Metzger, J.: Large isopserimetric surfaces in initial data sets. J. Differ. Geom. 94(1), 159---186 (2013)
[13]
Evans, L .C.: Partial Differential Equations. AMS, Providence (1998)
[14]
Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15(6), 1357---1411 (2015)
[15]
Hajłasz, P.: Sobolev mappings between manifolds and metric spaces. In: Maz'ya, V. (ed.) Sobolev Spaces in Mathematics I, Volume 8 of International Mathematical Series, pp. 185---222. Springer, Berlin (2009)
[16]
Hardering, H.: Intrinsic Discretization Error Bounds for Geodesic Finite Elements. PhD thesis, Freie Universität Berlin (2015)
[17]
Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, second edn. Cambridge University Press, Cambridge (2002)
[18]
Hélein, F., Wood, J.C.: Harmonic maps. In: Krupka, D., Saunders, D. (eds.) Handbook of Global Analysis, pp. 417---491. Elsevier, Amsterdam (2008)
[19]
Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2008)
[20]
Karcher, H.: Mollifier smoothing and Riemannian center of mass. Commun. Pure Appl. Math. 30, 509---541 (1977)
[21]
Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles--a classification. Bull. Tokyo Gakugei Univ. 40, 1---29 (1997)
[22]
Melcher, C.: Chiral skyrmions in the plane. Proc. R. Soc. Lond. A: Mater. 470(2172), 20140394 (2014)
[23]
Münch, I: Ein geometrisch und materiell nichtlineares Cosserat-Model--Theorie, Numerik und Anwendungsmöglichkeiten. PhD thesis, Universität Karlsruhe (2007)
[24]
Münch, I., Neff, P., Wagner, W.: Transversely isotropic material: nonlinear Cosserat versus classical approach. Contin. Mech. Therm. 23(1), 27---34 (2011)
[25]
Münch, I., Wagner, W., Neff, P.: Theory and FE-analysis for structures with large deformation under magnetic loading. Comput. Mech. 44(1), 93---102 (2009)
[26]
Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20---63 (1956)
[27]
Neff, P.: A geometrically exact planar cosserat shell-model with microstructure: existence of minimizers for zero cosserat couple modulus. Math. Models Methods Appl. Sci. 17(03), 363---392 (2007)
[28]
Palais, R .S.: Foundations of Global Non-linear Analysis. Benjamin, New York (1968)
[29]
Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197---226 (1995)
[30]
Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645---1670 (2010)
[31]
Sander, O.: Geodesic finite elements on simplicial grids. Int. J. Numer. Methods Eng. 92(12), 999---1025 (2012)
[32]
Sander, O.: Geodesic finite elements of higher order. IMA J. Numer. Anal. 36(1), 238---266 (2015)
[33]
Sander, O.: Test Function Spaces for Geometric Finite Elements. arXiv:1607.07479 (2016)
[34]
Sander, O., Neff, P., Bîrsan, M.: Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput. Mech. 57(5), 817---841 (2016)
[35]
Schmeißer, H.-J., Sickel, W.: Vector-valued Sobolev spaces and Gagliardo---Nirenberg inequalities. In: Brezis, H., Chipot, M., Escher, J. (eds.) Nonlinear Elliptic and Parabolic Problems, pp. 463---472. Birkhäuser, Boston (2005)
[36]
Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253---268 (1983)
[37]
Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79(1), 21---70 (1990)
[38]
Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79---116 (1986)
[39]
Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558---581 (1985)
[40]
Vese, L.A., Osher, S.J.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40(6), 2085---2104 (2002)
[41]
Wriggers, P., Gruttmann, F.: Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int. J. Num. Methods Eng. 36, 2049---2071 (1993)
  1. $$L^{2}$$L2-discretization error bounds for maps into Riemannian manifolds

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Numerische Mathematik
        Numerische Mathematik  Volume 139, Issue 2
        June 2018
        222 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 June 2018

        Author Tags

        1. 65N15
        2. 65N30

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 29 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media