Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dynamic Multiple-Message Broadcast: Bounding Throughput in the Affectance Model

Published: 10 July 2023 Publication History

Abstract

We study a dynamic version of the Multiple-Message Broadcast problem, where packets are continuously injected in network nodes for dissemination throughout the network. Our performance metric is the ratio of the throughput of such protocol against the optimal one, for any sufficiently long period of time since startup. We present and analyze a dynamic Multiple-Message Broadcast protocol that works under an affectance model, which parameterizes the interference that other nodes introduce in the communication between a given pair of nodes. As an algorithmic tool, we develop an efficient algorithm to schedule a broadcast along a BFS tree under the affectance model. To provide a rigorous and accurate analysis, we define two novel network characteristics based on the network topology and the affectance function. The combination of these characteristics influence the performance of broadcasting with affectance (modulo a logarithmic function). We also carry out simulations of our protocol under affectance. To the best of our knowledge, this is the first dynamic Multiple-Message Broadcast protocol that provides throughput guarantees for continuous injection of messages and works under the affectance model.

References

[1]
Alon N, Bar-Noy A, Linial N, and Peleg D A lower bound for radio broadcast J. Comput. Syst. Sci. 1991 43 2 290-298
[2]
Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic broadcast on multiple access channels. In: Proc. of the 29th IEEE International Conference on Computer Communications, INFOCOM 2010, pp. 1–5. IEEE, Washington, DC, San Diego, CA (2010)
[3]
Anderson CR and Rappaport TS In-building wideband partition loss measurements at 2.5 and 60 ghz IEEE Trans. Wirel. Commun. 2004 3 3 922-928
[4]
Bar-Yehuda R, Israeli A, and Itai A Multiple communication in multihop radio networks SIAM J. Comput. 1993 22 4 875-887
[5]
Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proc. of the 17th Annual ACM Symposium on Parallel Algorithms, SPAA 2005, pp. 325–332. ACM, New York, NY, Las Vegas, NV (2005)
[6]
Bianchi G Performance analysis of the ieee 802.11 distributed coordination function IEEE Journal on Selected Areas in Communications 2000 18 3 535-547
[7]
Bienkowski, M., Jurdzinski, T., Korzeniowski, M., Kowalski, D.R.: Distributed online and stochastic queuing on a multiple access channel. In: Proc. of the 26th International Symposium on Distributed Computing, DISC 2012, Lect. Notes. Comput. Sci. 7611, 121–135. Springer-Verlag, Berlin, Salvador, Brazil (2012)
[8]
Chlamtac I and Kutten S Tree-based broadcasting in multihop radio networks IEEE Trans. Computers 1987 36 10 1209-1223
[9]
Chlamtac I and Weinstein O The wave expansion approach to broadcasting in multihop networks IEEE Trans. Commun. 1991 39 3 426-433
[10]
Chlebus BS Pardalos P, Rajasekaran S, Reif J, and Rolim J Randomized communication in radio networks Handbook on Randomized Computing, I, 401–456 2001 Norwell, MA Kluwer Academic Publishers
[11]
Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed communication in ad-hoc radio networks. In: Proc. of the 38th International Colloquium on Automata, Languages and Programming, ICALP 2011, Lect. Notes Comput. Sci. vol. 6756, pp. 613–624. Springer-Verlag, Berlin, Zurich, Switzerland (2011)
[12]
Chlebus BS, Kowalski DR, and Rokicki MA Maximum throughput of multiple access channels in adversarial environments Distrib. Comput. 2009 22 2 93-116
[13]
Chlebus BS, Kowalski DR, and Rokicki MA Adversarial queuing on the multiple access channel ACM Transactions on Algorithms 2012 8 1 5
[14]
Cisco Systems, Inc.: Cisco wireless control system configuration guide, release 3.2 (2017). https://www.cisco.com/c/en/us/td/docs/wireless/wcs/3-2/configuration/guide/wcscfg32/wcscod.html Accessed Sep 2017
[15]
Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proc. of the 12th Annual Symposium on Discrete Algorithms, SODA 2001, pp. 709–718. SIAM, Philadelphia, PA, Washington, DC (2001)
[16]
Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. of the 44th Symposium on Foundations of Computer Science, FOCS 2003, pp. 492–501. IEEE Computer Society, Washington, DC, Cambridge, MA (2003)
[17]
Daum, S., Gilbert, S., Kuhn, F., Newport, C.C.: Broadcast in the ad hoc sinr model. In: Proc. of the - 27th International Symposium on Distributed Computing, DISC 2013, Lect. Notes Comput. Sci. 8205, 358–372. Springer-Verlag, Berlin, Jerusalem, Israel (2013)
[18]
De Marco, G.: Distributed broadcast in unknown radio networks. In: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 208–217. SIAM, Philadelphia, PA, San Francisco, CA (2008)
[19]
Deb S, Monogioudis P, Miernik J, and Seymour JP Algorithms for enhanced inter-cell interference coordination (eicic) in lte hetnets IEEE/ACM Trans Networking 2014 22 1 137-150
[20]
Ga̧sieniec L, Peleg D, and Xin Q Faster communication in known topology radio networks. Distrib. Comput. 2007 19 4 289-300
[21]
Ghaffari, M., Haeupler, B., Khabbazian, M.: A bound on the throughput of radio networks. CoRR abs/1302.0264 (2013)
[22]
Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized broadcast in radio networks with collision detection. In: Proc. of the 32nd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2013, pp. 325–334. ACM, New York, NY, Montreal, Canada (2013)
[23]
Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of arbitrary wireless networks. In: IEEE INFOCOM 2009, pp. 1872–1880. IEEE (2009)
[24]
Halldórsson, M.M., Kortsarz, G., Mitra, P., Tonoyan, T.: Spanning Trees With Edge Conflicts and Wireless Connectivity. In: I. Chatzigiannakis, C. Kaklamanis, D. Marx, D. Sannella (eds.) 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, pp. 158:1–158:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). 10.4230/LIPIcs.ICALP.2018.158 http://drops.dagstuhl.de/opus/volltexte/2018/9162
[25]
Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in apx. In: Proc. of the 36th International Colloquium on Automata, Languages and Programming, ICALP 2009, pp. 525–536. Springer-Verlag, Berlin, Rhodes, Greece (2009)
[26]
Jurdzinski, T., Kowalski, D.R.: Distributed backbone structure for algorithms in the sinr model of wireless networks. In: Proc. of the 26th International Symposium on Distributed Computing, DISC 2012, Lect Notes Comput Sci, vol. 7611, pp. 106–120. Springer-Verlag, Berlin, Salvador, Brazil (2012)
[27]
Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed randomized broadcasting in wireless networks under the SINR model. In: Proc. of the - 27th International Symposium on Distributed Computing, DISC 2013, Lect Notes Comput Sci, vol. 8205, pp. 373–387. Springer-Verlag, Berlin, Jerusalem, Israel (2013)
[28]
Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broadcasting in uniform-power ad hoc wireless networks. In: Proc. of the 19th International Symposium on Fundamentals of Computation Theory, FCT 2013, Lect Notes Comput Sci, vol. 8070, pp. 195–209. Springer-Verlag, Berlin, Liverpool, UK (2013)
[29]
Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: Proc. of the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2012, pp. 281–290. ACM, New York, NY, Madeira, Portugal (2012)
[30]
Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks (2010). http://www.thomas-kesselheim.de/science/DistributedContentionResolution.pdf Accessed July 2022. See conference version in [32]
[31]
Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Proc. of the 24th International Symposium on Distributed Computing, DISC 2010, Lect Notes Comput Sci, vol. 6343, pp. 163–178. Springer-Verlag, Berlin, Cambridge, MA (2010). See full version in [31]
[32]
Khabbazian, M., Kowalski, D.R.: Time-efficient randomized multiple-message broadcast in radio networks. In: Proc. of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, pp. 373–379. ACM, New York, NY, San Jose, CA (2011)
[33]
Kowalski, D.R.: On selection problem in radio networks. In: Proc. of the 24th ACM Symposium on Principles of Distributed Computing, PODC 2005, pp. 158–166. ACM, New York, NY, Las Vegas, NV (2005)
[34]
Kowalski, D.R., Kudaravalli, H., Mosteiro, M.A.: Ad-hoc affectance-selective families for layer dissemination. CoRR abs/1703.01704 (2017). http://arxiv.org/abs/1703.01704
[35]
Kowalski, D.R., Mosteiro, M.A., Rouse, T.: Dynamic multiple-message broadcast: bounding throughput in the affectance model. In: Proc. of the 10th ACM International Workshop on Foundations of Mobile Computing, FOMC 2014, pp. 39–46. ACM, New York, NY, Philadelphia, PA (2014)
[36]
Kowalski DR and Pelc A Time of deterministic broadcasting in radio networks with local knowledge SIAM J. Comput. 2004 33 4 870-891
[37]
Kowalski DR and Pelc A Broadcasting in undirected ad hoc radio networks Distrib. Comput. 2005 18 1 43-57
[38]
Kowalski DR and Pelc A Broadcasting in undirected ad hoc radio networks Distrib. Comput. 2005 18 1 43-57
[39]
Kowalski DR and Pelc A Optimal deterministic broadcasting in known topology radio networks Distrib. Comput. 2007 19 3 185-195
[40]
Kushilevitz E and Mansour Y An Ω(Dlog(N/D)) lower bound for broadcast in radio networks SIAM J. Comput. 1998 27 3 702-712
[41]
Radunovic, B., Gunawardena, D., Key, P., Proutiere, A., Singh, N., Balan, V., Dejean, G.: Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In: Proc. of the 5th IEEE Workshop on Wireless Mesh Networks, WIMESH 2010, pp. 1–6. IEEE, Boston, MA (2010)
[42]
Scheideler, C., Richa, A.W., Santi, P.: An o(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: Proc. of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2008, pp. 91–100. ACM, New York, NY, Hong Kong (2008)
[43]
Sciancalepore V, Mancuso V, Banchs A, Zaks S, and Capone A Enhanced content update dissemination through d2d in 5g cellular networks IEEE Trans. Wirel. Commun. 2016 15 11 7517-7530
[44]
Shokri-Ghadikolaei H, Fischione C, Fodor G, Popovski P, and Zorzi M Millimeter wave cellular networks: A mac layer perspective IEEE Trans. Commun. 2015 63 10 3437-3458
[45]
Vutukuru, M., Jamieson, K., Balakrishnan, H.: Harnessing exposed terminals in wireless networks. In: Proc. of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2008, pp. 59–72. USENIX, Berkeley, CA, San Francisco, CA (2008)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theory of Computing Systems
Theory of Computing Systems  Volume 67, Issue 4
Aug 2023
229 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 10 July 2023
Accepted: 26 May 2023

Author Tags

  1. Multiple message broadcast
  2. Scheduling
  3. Affectance model
  4. SINR model

Qualifiers

  • Research-article

Funding Sources

  • Polish National Science Center (NCN)
  • UK Royal Society
  • Pace University

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media