Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Real-time EEG-based emotion monitoring using stable features

Published: 01 March 2016 Publication History

Abstract

In human---computer interaction (HCI), electroencephalogram (EEG) signals can be added as an additional input to computer. An integration of real-time EEG-based human emotion recognition algorithms in human---computer interfaces can make the users experience more complete, more engaging, less emotionally stressful or more stressful depending on the target of the applications. Currently, the most accurate EEG-based emotion recognition algorithms are subject-dependent, and a training session is needed for the user each time right before running the application. In this paper, we propose a novel real-time subject-dependent algorithm with the most stable features that gives a better accuracy than other available algorithms when it is crucial to have only one training session for the user and no re-training is allowed subsequently. The proposed algorithm is tested on an affective EEG database that contains five subjects. For each subject, four emotions (pleasant, happy, frightened and angry) are induced, and the affective EEG is recorded for two sessions per day in eight consecutive days. Testing results show that the novel algorithm can be used in real-time emotion recognition applications without re-training with the adequate accuracy. The proposed algorithm is integrated with real-time applications "Emotional Avatar" and "Twin Girls" to monitor the users emotions in real time.

References

[1]
Allen, J.J., Urry, H.L., Hitt, S.K., Coan, J.A.: The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 41(2), 269---280 (2004)
[2]
Bouton, M.E.: Learning and Behavior: A Contemporary Synthesis. Sinauer Associates, Sunderland (2007)
[3]
Bradley, M.M., Lang, P.J.: The international affective digitized sounds (; iads-2): affective ratings of sounds and instruction manual. Technical report B-3, University of Florida, Gainesville (2007)
[4]
Brown, L., Grundlehner, B., Penders, J.: Towards wireless emotional valence detection from EEG. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 2188---2191. IEEE (2011)
[5]
Chanel, G., Kierkels, J.J., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int. J. Hum.---Comput. Stud. 67(8), 607---627 (2009)
[6]
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
[7]
Emotiv. http://www.emotiv.com. Accessed 26 Feb 2015
[8]
Frantzidis, C., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D., et al.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. Inf. Technol. Biomed. IEEE Trans. 14(3), 589---597 (2010)
[9]
Gasser, T., Bächer, P., Steinberg, H.: Test-retest reliability of spectral parameters of the EEG. Electroencephalogr. Clin. Neurophysiol. 60(4), 312---319 (1985)
[10]
Gasser, T., Jennen-Steinmetz, C., Verleger, R.: EEG coherence at rest and during a visual task in two groups of children. Electroencephalogr. Clin. Neurophysiol. 67(2), 151---158 (1987)
[11]
Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K.: Reliability of quantitative EEG features. Clin. Neurophysiol. 118(10), 2162---2171 (2007)
[12]
Haptek. http://www.haptek.com. Accessed 28 Feb 2015
[13]
Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D: Nonlinear Phenom. 31(2), 277---283 (1988)
[14]
Hosseini, S.A., Khalilzadeh, M.A., Naghibi-Sistani, M.B., Niazmand, V.: Higher order spectra analysis of EEG signals in emotional stress states. In: 2010 Second International Conference on Information Technology and Computer Science (ITCS), pp. 60---63. IEEE (2010)
[15]
Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph. In: IEEE International Conference on Systems, Man and Cybernetics, 2003. vol. 5, pp. 4204---4209. IEEE (2003)
[16]
Kedem, B., Yakowitz, S.: Time Series Analysis by Higher Order Crossings. IEEE Press, Piscataway (1994)
[17]
Koelstra, S., Mühl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. Affect. Comput. IEEE Trans. 3(1), 18---31 (2012)
[18]
Kondacs, A., Szabó, M.: Long-term intra-individual variability of the background EEG in normals. Clin. Neurophysiol. 110(10), 1708---1716 (1999)
[19]
Lan, Z., Sourina, O., Wang, L., Liu, Y.: Stability of features in real-time EEG-based emotion recognition algorithm. In: 2014 International Conference on Cyberworlds (CW), pp. 137---144. IEEE (2014)
[20]
Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (iaps): affective ratings of pictures and instruction manual. Technical report A-8 (2008)
[21]
Li, M., Lu, B.L.: Emotion classification based on gamma-band EEG. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 1223---1226. IEEE (2009)
[22]
Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. Biomed. Eng. IEEE Trans. 57(7), 1798---1806 (2010)
[23]
Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009, pp. 489---492. IEEE (2009)
[24]
Liu, Y., Sourina, O.: EEG databases for emotion recognition. In: 2013 International Conference on Cyberworlds (CW), pp. 302---309. IEEE (2013)
[25]
Liu, Y., Sourina, O.: Real-time fractal-based valence level recognition from EEG. In: Transactions on Computational Science XVIII, pp. 101---120. Springer (2013)
[26]
Liu, Y., Sourina, O.: Real-time subject-dependent EEG-based emotion recognition algorithm. In: Transactions on Computational Science XXIII, pp. 199---223. Springer (2014)
[27]
Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its applications. In: Transactions on computational science XII, pp. 256---277. Springer (2011)
[28]
McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1(1), 30 (1996)
[29]
Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1), 45---51 (2011)
[30]
Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. Inf. Technol. Biomed. IEEE Trans. 14(2), 186---197 (2010)
[31]
Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. Inf. Technol. Biomed. IEEE Trans. 15(5), 737---746 (2011)
[32]
Petrantonakis, P.C., Hadjileontiadis, L.J.: Adaptive emotional information retrieval from EEG signals in the time-frequency domain. Signal Process. IEEE Trans. 60(5), 2604---2616 (2012)
[33]
Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. Pattern Anal. Mach. Intell. IEEE Trans. 23(10), 1175---1191 (2001)
[34]
Salinsky, M., Oken, B., Morehead, L.: Test-retest reliability in EEG frequency analysis. Electroencephalogr. Clin. Neurophysiol. 79(5), 382---392 (1991)
[35]
Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, New York (2013)
[36]
Schaaff, K.: EEG-Based Emotion Recognition. Universitat Karlsruhe (TH), Karlsruhe (2008)
[37]
Schaaff, K., Schultz, T.: Towards an EEG-based emotion recognizer for humanoid robots. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009. RO-MAN 2009, pp. 792---796. IEEE (2009)
[38]
Sohaib, A.T., Qureshi, S., Hagelbäck, J., Hilborn, O., Jeră¿ić, P.: Evaluating classifiers for emotion recognition using EEG. In: Foundations of Augmented Cognition, pp. 492---501. Springer (2013)
[39]
Sourina, O., Liu, Y., Nguyen, M.K.: Real-time EEG-based emotion recognition for music therapy. J. Multimodal User Interf. 5(1---2), 27---35 (2012)
[40]
Tomarken, A.J., Davidson, R.J., Wheeler, R.E., Kinney, L.: Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency. Psychophysiology 29(5), 576---592 (1992)
[41]
Wang, X.W., Nie, D., Lu, B.L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Neural Information Processing, pp. 734---743. Springer (2011)
[42]
Williams, C.E., Stevens, K.N.: Emotions and speech: some acoustical correlates. J. Acoust. Soc. Am. 52(4B), 1238---1250 (1972)

Cited By

View all
  • (2024)EEG-based emotion recognition using MobileNet Recurrent Neural Network with time-frequency featuresApplied Soft Computing10.1016/j.asoc.2024.111338154:COnline publication date: 1-Mar-2024
  • (2024)Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signalsNeural Computing and Applications10.1007/s00521-024-09573-636:16(9189-9202)Online publication date: 1-Jun-2024
  • (2023)MGEED: A Multimodal Genuine Emotion and Expression Detection DatabaseIEEE Transactions on Affective Computing10.1109/TAFFC.2023.328635115:2(606-619)Online publication date: 15-Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The Visual Computer: International Journal of Computer Graphics
The Visual Computer: International Journal of Computer Graphics  Volume 32, Issue 3
March 2016
137 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 March 2016

Author Tags

  1. EEG
  2. Emotion recognition
  3. Fractal dimension (FD)
  4. Intra-class correlation coefficient (ICC)
  5. Stability

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)EEG-based emotion recognition using MobileNet Recurrent Neural Network with time-frequency featuresApplied Soft Computing10.1016/j.asoc.2024.111338154:COnline publication date: 1-Mar-2024
  • (2024)Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signalsNeural Computing and Applications10.1007/s00521-024-09573-636:16(9189-9202)Online publication date: 1-Jun-2024
  • (2023)MGEED: A Multimodal Genuine Emotion and Expression Detection DatabaseIEEE Transactions on Affective Computing10.1109/TAFFC.2023.328635115:2(606-619)Online publication date: 15-Jun-2023
  • (2023)Modified multidimensional scaling on EEG signals for emotion classificationMultimedia Tools and Applications10.1007/s11042-023-14671-z82:18(28547-28568)Online publication date: 23-Feb-2023
  • (2023)A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signalsMultimedia Tools and Applications10.1007/s11042-023-14489-982:18(27269-27304)Online publication date: 9-Feb-2023
  • (2022)EEG Based Emotion Recognition: A Tutorial and ReviewACM Computing Surveys10.1145/352449955:4(1-57)Online publication date: 21-Nov-2022
  • (2022)Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sourcesInformation Fusion10.1016/j.inffus.2021.07.00777:C(107-117)Online publication date: 1-Jan-2022
  • (2022)Automated emotion recognitionComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2022.106646215:COnline publication date: 1-Mar-2022
  • (2022)Electroencephalograph-based emotion recognition using convolutional neural network without manual feature extractionApplied Soft Computing10.1016/j.asoc.2022.109534128:COnline publication date: 1-Oct-2022
  • (2022)PTCERE: personality-trait mapping using cognitive-based emotion recognition from electroencephalogram signalsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-022-02502-539:7(2953-2967)Online publication date: 9-May-2022
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media