Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The Dilworth Number of Auto-Chordal Bipartite Graphs

Published: 01 September 2015 Publication History

Abstract

The mirror (or bipartite complement) $${{\mathrm{mir}}}(B)$$mir(B) of a bipartite graph $$B=(X,Y,E)$$B=(X,Y,E) has the same color classes $$X$$X and $$Y$$Y as $$B$$B, and two vertices $$x \in X$$x X and $$y \in Y$$y Y are adjacent in $${{\mathrm{mir}}}(B)$$mir(B) if and only if $$xy \notin E$$xy E. A bipartite graph is chordal bipartite if none of its induced subgraphs is a chordless cycle with at least six vertices. In this paper, we deal with chordal bipartite graphs whose mirror is chordal bipartite as well; we call these graphs auto-chordal bipartite graphs (ACB graphs for short). We characterize ACB graphs, show that ACB graphs have unbounded bipartite Dilworth number, and we characterize ACB graphs with bipartite Dilworth number $$k$$k.

References

[1]
Benzaken, C., Hammer, P.L., de Werra, D.: Split graphs of Dilworth number 2. Discrete Mathematics 55, 123---127 (1985)
[2]
Berry, A., Sigayret, A.: Dismantlable lattices in the mirror. In: Cellier, P., Distel, F., Ganter, B. (eds.) Proceedings of ICFCA'13, LNAI 7880, pp. 44---59. Springer, Heidelberg (2013)
[3]
Berry, A., Brandstädt, A., Engel, K.: The Dilworth number of auto-chordal-bipartite graphs. arXiv:1309.5787vl (2013)
[4]
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (1999)
[5]
Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. Annals Discrete Mathematics 1, 145---162 (1977)
[6]
Dahlhaus, E.: Chordale Graphen im besonderen Hinblick auf parallele Algorithmen. Habilitation Thesis, Universität Bonn (unpublished) (1991)
[7]
Földes, S., Hammer, P.L.: Split graphs. Congr. Numer. 19, 311---315 (1977)
[8]
Földes, S., Hammer, P.L.: Split graphs having Dilworth number 2. Canadian J. Math. 29, 666---672 (1977)
[9]
Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. JGT 2, 155---163 (1978)
[10]
Korpelainen, N., Lozin, V.V., Mayhill, C.: Split permutation graphs. Graphs and Combinatorics 30, 633---646 (2014)
[11]
Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16, 854---879 (1987)
[12]
Nara, C.: Split graphs with Dilworth number three. Natural Science Report of the Ochanomizu University. 33(1/2), 37---44 (unpublished, available online) (1982)
[13]
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973---989 (1987)
[14]
Spinrad, J.P.: Efficient graph representations, Fields Institute Monographs, vol.19. AMS, Providence (2003)
[15]
Spinrad, J.P.: Doubly lexical ordering of dense 0---1 matrices. IPL 45, 229---235 (1993)
[16]
Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Alg. Discr. Meth. 3, 351---358 (1982)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Graphs and Combinatorics
Graphs and Combinatorics  Volume 31, Issue 5
September 2015
691 pages
ISSN:0911-0119
EISSN:1435-5914
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2015

Author Tags

  1. 05C75
  2. 05C85
  3. 68R10
  4. Bipartite complement
  5. Chordal bipartite graphs
  6. Dilworth number
  7. Mirror graph

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media