Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Noisy rumor spreading and plurality consensus

Published: 01 August 2019 Publication History

Abstract

Error-correcting codes are efficient methods for handling noisy communication channels in the context of technological networks. However, such elaborate methods differ a lot from the unsophisticated way biological entities are supposed to communicate. Yet, it has been recently shown by Feinerman et al. (PODC 2014) that complex coordination tasks such as rumor spreading and majority consensus can plausibly be achieved in biological systems subject to noisy communication channels, where every message transferred through a channel remains intact with small probability $$\frac{1}{2}+\epsilon $$12+∈, without using coding techniques. This result is a considerable step towards a better understanding of the way biological entities may cooperate. It has nevertheless been established only in the case of 2-valued opinions: rumor spreading aims at broadcasting a single-bit opinion to all nodes, and majority consensus aims at leading all nodes to adopt the single-bit opinion that was initially present in the system with (relative) majority. In this paper, we extend this previous work to k-valued opinions, for any constant $$k\ge 2$$k?2. Our extension requires to address a series of important issues, some conceptual, others technical. We had to entirely revisit the notion of noise, for handling channels carrying k-valued messages. In fact, we precisely characterize the type of noise patterns for which plurality consensus is solvable. Also, a key result employed in the bivalued case by Feinerman et al. is an estimate of the probability of observing the most frequent opinion from observing the mode of a small sample. We generalize this result to the multivalued case by providing a new analytical proof for the bivalued case that is amenable to be extended, by induction, and that is of independent interest.

References

[1]
Abdullah, M.A., Draief, M.: Global majority consensus by local majority polling on graphs of a given degree sequence. Discrete Appl. Math. 180, 1---10 (2015)
[2]
Afek, Y., Alon, N., Barad, O., Barkai, N., Bar-Joseph, Z., Hornstein, E.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183---185 (2011)
[3]
Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195---208 (2013)
[4]
Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in population protocols. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2221---2239 (2018)
[5]
Ame, J.-M., Rivault, C., Deneubourg, J.-L.: Cockroach aggregation based on strain odour recognition. Anim. Behav. 68(4), 793---801 (2004)
[6]
Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279---304 (2007)
[7]
Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87---102 (2008)
[8]
Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Middleware for Network Eccentric and Mobile Applications. Springer, pp. 97---120 (2009)
[9]
Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R.: Plurality consensus in the gossip model. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 371---390 (2015)
[10]
Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.: Simple dynamics for plurality consensus. Distrib. Comput. 30(4), 1---14 (2016)
[11]
Ben-Shahar, O., Dolev, S., Dolgin, A., Segal, M.: Direction election in flocking swarms. In: Proceedings of the 6th International Workshop on Foundations of Mobile Computing, ACM, pp. 73---80 (2010)
[12]
Berenbrink, P., Friedetzky, T., Kling, P., Mallmann-Trenn, F., Wastell, C.: Plurality consensus in arbitrary graphs: lessons learned from load balancing. In: Proceedings of the 24th Annual European Symposium on Algorithms, vol. 57, p. 10:1---10:18 (2016)
[13]
Boczkowski, L., Korman, A., Natale, E.: Limits for Rumor Spreading in Stochastic Populations. In: Proceedings of the 9th Innovations in Theoretical Computer Science Conference, vol. 94, pp. 49:1---49:21 (2018)
[14]
Boczkowski, L., Korman, A., Natale, E.: Minimizing message size in stochastic communication patterns: fast self-stabilizing protocols with 3 bits. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 2540---2559 (2017)
[15]
Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2, 656---656 (2011)
[16]
Chazelle, B.: Natural algorithms. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 422---431 (2009)
[17]
Conradt, L., Roper, T.J.: Group decision-making in animals. Nature 421(6919), 155---158 (2003)
[18]
Cooper, C., Elsässer, R., Radzik, T.: The power of two choices in distributed voting. In: Automata, Languages, and Programming, vol. 8573 of Lecture Notes in Computer Science. Springer, pp. 435---446 (2014)
[19]
Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, ACM, pp. 1---12 (1987)
[20]
Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing consensus with the power of two choices. In: Proceedings of the 23th Annual ACM Symposium on Parallelism in Algorithms and Architectures, ACM, pp. 149---158 (2011)
[21]
Draief, M., Vojnovic, M.: Convergence speed of binary interval consensus. SIAM J. Control Optim. 50(3), 1087---1109 (2012)
[22]
Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)
[23]
El Gamal, A., Kim, Y.-H.: Network Information Theory. Cambridge University Press, Cambridge (2011)
[24]
Elsässer, R., Friedetzky, T., Kaaser, D., Mallmann-Trenn, F., Trinker, H.: Brief announcement: rapid asynchronous plurality consensus. In: Proceedings of the 37th ACM Symposium on Principles of Distributed Computing, ACM, pp. 363---365 (2017)
[25]
Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: Efficient information dissemination despite noisy, limited and anonymous communication. In: Proceedings of the 34th ACM Symposium on Principles of Distributed Computing, ACM, pp. 114---123. Extended abstract of {27} (2014)
[26]
Feinerman, O., Haeupler, B., Korman, A.: Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication. Distrib. Comput. 30(5), 1---17 (2015)
[27]
Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.: Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357(1427), 1567---1583 (2002)
[28]
Franks, N.R., Dornhaus, A., Fitzsimmons, J.P., Stevens, M.: Speed versus accuracy in collective decision making. Proc. Biol. Sci. 270(1532), 2457---2463 (2003)
[29]
Ghaffari, M., Parter, M.: A polylogarithmic gossip algorithm for plurality consensus. In: Proceedings of the 36th ACM Symposium on Principles of Distributed Computing, ACM, pp. 117---126 (2016)
[30]
Giakkoupis, G., Berenbrink, P., Friedetzky, T., Kling, P.: Efficient Plurality Consensus, or: the benefits of cleaning up from time to time. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming vol. 55, p. 136:1---136:14 (2016)
[31]
Jung, K., Kim, B.Y., Vojnović, M.: Distributed ranking in networks with limited memory and communication. In: Proceedings of the 2012 IEEE International Symposium on Information Theory, IEEE, pp. 980---984 (2012)
[32]
Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE, pp. 565---574 (2000)
[33]
Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of the 44st Annual Symposium on Foundations of Computer Science, IEEE, pp. 482---491 (2003)
[34]
Korman, A., Greenwald, E., Feinerman, O.: Confidence sharing: an economic strategy for efficient information flows in animal groups. PLoS Comput. Biol. 10(10), e1003862---e1003862 (2014)
[35]
Land, M., Belew, R.: No perfect two-state cellular automata for density classification exists. Phys. Rev. Lett. 74(25), 5148---5150 (1995)
[36]
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
[37]
Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus on complete graphs. In: Proceedings of 28th IEEE INFOCOM (2009)
[38]
Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213---223 (1987)
[39]
Robbins, H.: A remark on Stirling's formula. Am. Math. Mon. 62, 26---29 (1955)
[40]
Seeley, T.D., Buhrman, S.C.: Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45(1), 19---31 (1999)
[41]
Seeley, T.D., Visscher, P.K.: Quorum sensing during nest-site selection by honeybee swarms. Behav. Ecol. Sociobiol. 56(6), 594---601 (2004)
[42]
Sumpter, D.J., Krause, J., James, R., Couzin, I.D., Ward, A.J.: Consensus decision making by fish. Curr. Biol. 18(22), 1773---1777 (2008)

Cited By

View all
  • (2023)Phase transition of the k-majority dynamics in biased communication modelsDistributed Computing10.1007/s00446-023-00444-236:2(107-135)Online publication date: 1-Jun-2023
  • (2022)Phase Transition of the 3-Majority Dynamics with Uniform Communication NoiseStructural Information and Communication Complexity10.1007/978-3-031-09993-9_6(98-115)Online publication date: 27-Jun-2022
  • (2021)Phase Transitions of the k-Majority Dynamics in a Biased Communication ModelProceedings of the 22nd International Conference on Distributed Computing and Networking10.1145/3427796.3427811(146-155)Online publication date: 5-Jan-2021
  • Show More Cited By

Index Terms

  1. Noisy rumor spreading and plurality consensus

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Distributed Computing
    Distributed Computing  Volume 32, Issue 4
    August 2019
    101 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 August 2019

    Author Tags

    1. Biological distributed algorithms
    2. Noise
    3. PUSH model
    4. Plurality consensus
    5. Rumor spreading

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Phase transition of the k-majority dynamics in biased communication modelsDistributed Computing10.1007/s00446-023-00444-236:2(107-135)Online publication date: 1-Jun-2023
    • (2022)Phase Transition of the 3-Majority Dynamics with Uniform Communication NoiseStructural Information and Communication Complexity10.1007/978-3-031-09993-9_6(98-115)Online publication date: 27-Jun-2022
    • (2021)Phase Transitions of the k-Majority Dynamics in a Biased Communication ModelProceedings of the 22nd International Conference on Distributed Computing and Networking10.1145/3427796.3427811(146-155)Online publication date: 5-Jan-2021
    • (2020)Phase Transition of a Non-linear Opinion Dynamics with Noisy InteractionsStructural Information and Communication Complexity10.1007/978-3-030-54921-3_15(255-272)Online publication date: 29-Jun-2020

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media