Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An Asymptotic Analysis of Labeled and Unlabeled k-Trees

Published: 01 August 2016 Publication History

Abstract

In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$Uk(n) of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$Uk(n)~ckn-5/2źk-n, where $$c_k> 0$$ck>0 and $$\rho _{k}>0$$źk>0 denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$U(z)=źnź0Uk(n)zn.

References

[1]
Aldous, D.: The continuum random tree III. Ann. Probab. 21(1), 248---289 (1993)
[2]
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability--a survey. BIT Numer. Math. 25(1), 1---23 (1985)
[3]
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial $$k$$k-trees. Discrete Appl. Math. 23, 11---24 (1989)
[4]
Beineke, L.W., Pippert, R.E.: The number of labeled k-dimensional trees. J. Comb. Theory A 6(2), 200---205 (1969)
[5]
Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory A 14(2), 137---148 (1973)
[6]
Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 193---242. Elsevier (1990)
[7]
Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85(1), 12---75 (1990)
[8]
Darrasse, A., Soria, M.: Limiting distribution for distances in $$k$$k-trees. Comb. Algorithms Lect. Notes Comput. Sci. 5874, 170---182 (2009)
[9]
Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability. Springer, Berlin (2008)
[10]
Drmota, M., Gittenberger, B.: The distribution of nodes of given degree in random trees. J. Graph Theory 31(3), 227---253 (1999)
[11]
Drmota, M., Fusy, E., Kang, M., Kraus, V., Rue, J.: Asymptotic study of subcritical graph classes. SIAM J. Dicrete Math. 25, 1615---1651 (2011)
[12]
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2010)
[13]
Foata, D.: Enumerating k-trees. Discrete Math. 1, 181---186 (1971)
[14]
Fowler, T., Gessel, I., Labelle, G., Leroux, P.: The specification of 2-trees. Adv. Appl. Math. 28, 145---168 (2002)
[15]
Gainer-Dewar, A.: $$\Gamma $$Γ-species and the enumeration of $$k$$k-trees. Electron. J. Comb. 19(4), P45 (2012)
[16]
Gessel, I.M., Gainer-Dewar, A.: Counting unlabeled $$k$$k-trees. J. Comb. Theory A 126, 177---193 (2014)
[17]
Grötschel, M., Katona, G.O.H.: Building Bridges: Between Mathematics and Computer Science, Bolyai Society Mathematical Studies, vol. 19. Springer, Berlin (2008)
[18]
Haas, B., Miermont, G.: Scaling limits of Markov branching trees with applications to Galton---Watson and random unordered trees. Ann. Probab. 40(6), 2299---2706 (2012)
[19]
Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematika 15, 115---122 (1968)
[20]
Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York (1973)
[21]
Krause, A. : Bounded Treewidth Graphs---A Survey. German Russian Winter School, St. Petersburg, Russia. http://www14.in.tum.de/konferenzen/Jass03/presentations/krause (2003)
[22]
Labelle, G., Lamathe, C., Leroux, P.: Labelled and unlabelled enumeration of k-gonal 2-trees. J. Comb. Theory A 106, 193---219 (2004)
[23]
Moon, J.W.: The number of labeled k-trees. J. Comb. Theory A 6, 196---199 (1969)
[24]
Otter, R.: The number of trees. Ann. Math. 49, 583---599 (1948)
[25]
Panagiotou, K., Stufler, B., Weller, K.: Scaling Limits of Random Graphs from Subcritical Classes. arXiv:1411.1865 (2004)
[26]
Robinson, R.W., Schwenk, A.J.: The distribution of degrees in a large random tree. Discrete Math. 12, 359---372 (1975)
[27]
Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory B 35, 39---61 (1983)
[28]
Telle, J.A., Proskurowski, A.: Practical algorithms on partial $$k$$k-trees with an application to domination-like problems. Algorithms Data Struct. Lect. Notes Comput. Sci. 709, 610---621 (1993)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Algorithmica
Algorithmica  Volume 75, Issue 4
August 2016
255 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 August 2016

Author Tags

  1. 05A15
  2. 05A16
  3. Central limit theorem
  4. Generating function
  5. Singularity analysis
  6. k-trees

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media