Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The Homogeneous Broadcast Problem in Narrow and Wide Strips II: Lower Bounds

Published: 01 July 2019 Publication History

Abstract

Let P be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let $$s\in P$$sýP be a given source node. Each node p can transmit information to all other nodes within unit distance, provided p is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source s can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem--in the latter s must be able to reach every node within a specified number of hops--where we also consider how the complexity depends on the width w of the strip. We prove the following two lower bounds. First, we show that the regular version of the problem is $${\mathsf {W[1]}}$$W[1]-complete when parameterized by the solution size k. More precisely, we show that the problem does not admit an algorithm with running time $$f(k)n^{o(\sqrt{k})}$$f(k)no(k), unless ETH fails. The construction can also be used to show an $$f(w)n^{\varOmega (w)}$$f(w)nΩ(w) lower bound when we parameterize by the strip width w. Second, we prove that the hop-bounded version of the problem is NP-hard in strips of width 40. These results complement the algorithmic results in a companion paper (de Berg et al. in Algorithmica, submitted).

References

[1]
de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S.: The homogeneous broadcast problem in narrow and wide strips I: algorithms. Algorithmica (submitted)
[2]
Alzoubi, K.M., Wan, P., Frieder, O.: Message-optimal connected dominating sets in mobile ad hoc networks. In: Proceedings of the 3rd ACM Interational Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2002, June 9---11, 2002, pp. 157---164. ACM, Lausanne (2002).
[3]
Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: Borowsky, E., Rajsbaum, S., (eds.) Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, July 13---16, 2003, pp. 63---72. ACM, New York (2003).
[4]
Yu, J., Wang, N., Wang, G., Yu, D.: Connected dominating sets in wireless ad hoc and sensor networks--a comprehensive survey. Comput. Commun. 36(2), 121---134 (2013).
[5]
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)
[6]
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329---343 (1982).
[7]
Masuyama, S., Ibaraki, T., Hasegawa, T.: The computational complexity of the $$m$$m-center problems on the plane. IEICE Trans. 64(2), 57---64 (1981)
[8]
de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.: A framework for ETH-tight algorithms and lower bounds in geometric intersection graphs. In: Proceedings of STOC 2018, pp. 574---586. ACM, New York (2018).
[9]
Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Parameterized and Exact Computation, 2nd International Workshop, IWPEC, Proceedings, pp. 154---165 (2006).
[10]
de Berg, M., Kisfaludi-Bak, S., Woeginger, G.: The complexity of dominating set in geometric intersection graphs. Theor. Comput. Sci. (2018).
[11]
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006).
[12]
Impagliazzo, R., Paturi, R.: On the complexity of $$k$$k-SAT. J. Comput. Syst. Sci. 62(2), 367---375 (2001).
[13]
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015).
[14]
Marx, D.: On the optimality of planar and geometric approximation schemes. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20---23, 2007, Providence, RI, USA, Proceedings, pp. 338---348. IEEE Computer Society, New York (2007).
[15]
Marx, D., Sidiropoulos, A.: The limited blessing of low dimensionality: when $$1-1/d$$1-1/d is the best possible exponent for $$d$$d-dimensional geometric problems. In: Proceedings of the 30th Annual Symposium on Computational Geometry, SOCG 2014, pp. 67---76. ACM, New York (2014).
[16]
Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzą?ewski, P.: Fine-grained complexity of coloring unit disks and balls. In: Proceedings of SoCG 2017, pp. 18:1---18:16 (2017).
[17]
Marx, D., Pilipczuk, M., Pilipczuk, M.: On subexponential parameterized algorithms for Steiner tree and directed subset TSP on planar graphs. In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7---9, 2018, pp. 474---484. IEEE Computer Society, New York (2018).
[18]
Kisfaludi-Bak, S., Nederlof, J., van Leeuwen, E.J.: Nearly ETH-tight algorithms for planar Steiner tree with terminals on few faces (2019). arXiv:1811.06871
[19]
Burton, B., Cabello, S., Kratsch, S., Pettersson, W.: The parameterized complexity of finding a 2-sphere in a simplicial complex. CoRR arXiv:1802.07175 (2018)
[20]
Bonnet, É., Bousquet, N., Charbit, P., Thomassé, S., Watrigant, R.: Parameterized complexity of independent set in H-free graphs. e-prints arXiv:1810.04620 (2018)
[21]
Amis, A.D., Prakash, R., Huynh, D., Vuong, T.: Max---min d-cluster formation in wireless ad hoc networks. In: Proceedings IEEE INFOCOM 2000, the Conference on Computer Communications, 19th Annual Joint Conference of the IEEE Computer and Communications Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel, March 26---30, 2000, pp. 32---41. IEEE, New York (2000).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Algorithmica
Algorithmica  Volume 81, Issue 7
July 2019
422 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 July 2019

Author Tags

  1. Broadcast
  2. Dominating set
  3. Range assignment
  4. Unit disk graph

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media