Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Asymptotic Analysis of q-Recursive Sequences

Published: 01 September 2022 Publication History

Abstract

For an integer q2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences.
Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of
Stern’s diatomic sequence,
the number of non-zero elements in some generalized Pascal’s triangle and
the number of unbordered factors in the Thue–Morse sequence.
For the first two sequences, our analysis even leads to precise formulæ without error terms.

References

[1]
Allouche J-P and Shallit J The ring of k-regular sequences Theor. Comput. Sci. 1992 98 2 163-197
[2]
Allouche J-P and Shallit J Automatic Sequences: Theory, Applications, Generalizations 2003 Cambridge Cambridge University Press
[3]
Allouche J-P and Shallit J The ring of k-regular sequences, II Theor. Comput. Sci. 2003 307 1 3-29
[4]
Bell JP On the values attained by a k-regular sequence Adv. Appl. Math. 2005 34 3 634-643
[5]
Berstel J and Reutenauer C Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications 2011 Cambridge Cambridge University Press
[6]
Bicknell-Johnson M Stern’s diatomic array applied to Fibonacci representations Fibonacci Quart. 2003 41 2 169-180
[7]
Brocot, A.: Calcul des rouages par approximation, nouvelle méthode, L’auteur. Source: Bibliothèque nationale de France (1862). http://catalogue.bnf.fr/ark:/12148/cb30164108s
[8]
Carlitz L A problem in partitions related to the Stirling numbers Riv. Mat. Univ. Parma 1964 5 61-75
[9]
Charlier É, Rampersad N, and Shallit J Enumeration and decidable properties of automatic sequences Int. J. Found. Comput. Sci. 2012 23 5 1035-1066
[10]
Coons M and Shallit J A pattern sequence approach to Stern’s sequence Discrete Math. 2011 311 22 2630-2633
[11]
Coons, M., Spiegelhofer, L.: Number theoretic aspects of regular sequences, sequences, groups, and number theory. Trends Math. 37–87 (2018).
[12]
Currie JD and Saari K Least periods of factors of infinite words Theor. Inform. Appl. 2009 43 1 165-178
[13]
Dumas P Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences Linear Algebra Appl. 2013 438 5 2107-2126
[14]
Finch SR Mathematical Constants, Encyclopedia of Mathematics and its Applications 2003 Cambridge Cambridge University Press
[15]
Fine NJ Binomial coefficients modulo a prime Am. Math. Month. 1947 54 589-592
[16]
Goč D, Henshall D, and Shallit J Automatic theorem-proving in combinatorics on words Int. J. Found. Comput. Sci. 2013 24 6 781-798
[17]
Goc, D., Mousavi, H., Shallit, J.: On the Number of Unbordered Factors, Language and Automata Theory and Applications. Lecture Notes in Computer Science, vol. 7810, pp. 299–310. Springer, Heidelberg (2013)
[18]
Goč D, Rampersad N, Rigo M, and Salimov P On the number of abelian bordered words (with an example of automatic theorem-proving) Int. J. Found. Comput. Sci. 2014 25 8 1097-1110
[19]
Graham RL, Knuth DE, and Patashnik O Concrete Mathematics 1994 2 Boston Addison-Wesley
[20]
Heuberger C and Krenn D Asymptotic analysis of regular sequences Algorithmica 2020 82 3 429-508
[21]
Heuberger, C., Krenn, D., Lipnik, G.F.: A note on the relation between recognisable series and regular sequences, and their minimal linear representations (2022). arXiv: 2201.13446 [math.CO]
[22]
Heuberger, C., Krenn, D., Prodinger, H.: Analysis of summatory functions of regular sequences: transducer and Pascal’s rhombus. In: Fill, J.A., Ward, M.D. (eds) Proceedings of the 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Leibniz International Proceedings in Informatics (LIPIcs), vol. 110, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 27:1–27:18 (2018).
[23]
Hinz AM, Klavžar S, Milutinovic U, Parisse D, and Petr C Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence Eur. J. Combin. 2005 26 5 693-708
[24]
Hwang HK, Janson S, and Tsai TH Exact and asymptotic solutions of a divide-and-conquer recurrence dividing at half: theory and applications ACM Trans. Algorithms 2017 13 4 43
[25]
Jungers R The Joint Spectral Radius. Theory and Applications 2009 Berlin Springer
[27]
Leroy J, Rigo M, and Stipulanti M Generalized Pascal triangle for binomial coefficients of words Adv. Appl. Math. 2016 80 24-47
[28]
Leroy J, Rigo M, and Stipulanti M Behavior of digital sequences through exotic numeration systems Electron. J. Combin. 2017 24 1 36
[29]
Leroy J, Rigo M, and Stipulanti M Counting the number of non-zero coefficients in rows of generalized Pascal triangles Discrete Math. 2017 340 5 862-881
[30]
Leroy J, Rigo M, and Stipulanti M Counting subword occurrences in base-b expansions Integers 2018 18A 32
[31]
Lothaire M Combinatorics on Words 1997 Cambridge Cambridge University Press
[32]
Lothaire M Algebraic Combinatorics on Words 2002 Cambridge Cambridge University Press
[33]
Northshield S Stern’s diatomic sequence 0,1,1,2,1,3,2,3,1,4, Am. Math. Month. 2010 117 7 581-598
[34]
Rota G-C and Strang G A note on the joint spectral radius Indag. Math. 1960 22 379-381
[35]
Stern M Ueber eine zahlentheoretische Funktion J. Reine Angew. Math. 1858 55 193-220
[36]
The On-Line Encyclopedia of Integer Sequences (2021). http://oeis.org
[37]
The SageMath Developers: SageMath Mathematics Software (Version 9.4) (2021). http://www.sagemath.org

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Algorithmica
Algorithmica  Volume 84, Issue 9
Sep 2022
390 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2022
Accepted: 22 January 2022
Received: 11 May 2021

Author Tags

  1. Regular sequence
  2. Recurrence relation
  3. Digital function
  4. Summatory function
  5. Asymptotic analysis
  6. Dirichlet series
  7. Stern’s diatomic sequence
  8. Pascal’s triangle
  9. Thue–Morse sequence

Author Tags

  1. 05A16
  2. 11A63
  3. 11B37
  4. 30B50
  5. 68Q45
  6. 68R05
  7. 68R15

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media