Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Realization Spaces of Arrangements of Convex Bodies

Published: 01 July 2017 Publication History

Abstract

We introduce combinatorial types of planar arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of the bodies and the topological complexity of their realization space. First, we show that every combinatorial type is realizable and its realization space is contractible under mild assumptions. Second, we prove a universality theorem that says the restriction of the realization space to arrangements polygons with a bounded number of vertices can have the homotopy type of any primary semialgebraic set.

References

[1]
Aichholzer, O., Miltzow, T., Pilz, A.: Extreme point and halving edge search in abstract order types. Comput. Geom. 46(8), 970---978 (2013)
[2]
Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications, vol. 46, 2nd edn. Cambridge University Press, Cambridge (1999)
[3]
Dhandapani, R., Goodman, J.E., Holmsen, A., Pollack, R.: Interval sequences and the combinatorial encoding of planar families of convex sets. Rev. Roum. Math. Pures Appl. 50(5---6), 537---553 (2005)
[4]
Dobbins, M.G., Holmsen, A., Hubard, A.: The Erd's---Szekeres problem for non-crossing convex sets. Mathematika 60(2), 463---484 (2014)
[5]
Dobbins, M.G., Holmsen, A.F., Hubard, A.: Regular systems of paths and families of convex sets in convex position. Trans. Am. Math. Soc. 368(5), 3271---3303 (2016)
[6]
Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete Comput. Geom. 46(3), 405---416 (2011)
[7]
Folkman, J., Lawrence, J.: Oriented matroids. J. Comb. Theory Ser. B 25(2), 199---236 (1978)
[8]
Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Math. 32(1), 27---35 (1980)
[9]
Goodman, J.E., Pollack, R.: On the combinatorial classification of nondegenerate configurations in the plane. J. Comb. Theory Ser. A 29(2), 220---235 (1980)
[10]
Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Comb. Theory Ser. A 37(3), 257---293 (1984)
[11]
Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in $$\mathbb{R}^d$$Rd. Discrete Comput. Geom. 1(3), 219---227 (1986)
[12]
Goodman, J.E., Pollack, R.: The combinatorial encoding of disjoint convex sets in the plane. Combinatorica 28(1), 69---81 (2008)
[13]
Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996)
[14]
Grünbaum, B.: Arrangements and spreads. In: CBMS Regional Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence, RI (1972)
[15]
Habert, L., Pocchiola, M.: Computing pseudotriangulations via branched coverings. Discrete Comput. Geom. 48(3), 518---679 (2012)
[16]
Habert, L., Pocchiola, M.: LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies. Discrete Comput. Geom. 50(3), 552---648 (2013)
[17]
Hubard, A.: Erd's---Szekeres para cuerpos convexos. Bachelor's Thesis, UNAM (2005)
[18]
Hubard, A., Montejano, L., Mora, E., Suk, A.: Order types of convex bodies. Order 28(1), 121---130 (2011)
[19]
Kapovich, M., Millson, J.J.: Universality theorems for configuration spaces of planar linkages. Topology 41(6), 1051---1107 (2002)
[20]
Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, Berlin (1992)
[21]
Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber. Math. Phys. Kl. Sächs. Akad. Wiss. 78, 256---267 (1926)
[22]
Mnev, N.E.: Varieties of combinatorial types of projective configurations and convex polyhedra. Dokl. Akad. Nauk SSSR 283(6), 1312---1314 (1985) (in Russian)
[23]
Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Ya., Vershik, A.M. (eds.) Topology and Geometry--Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 527---543. Springer, Berlin (1988)
[24]
Novick, M.: Allowable interval sequences and line transversals in the plane. Discrete Comput. Geom. 48(4), 1058---1073 (2012)
[25]
Novick, M.: Allowable interval sequences and separating convex sets in the plane. Discrete Comput. Geom. 47(2), 378---392 (2012)
[26]
Pach, J., Tóth, G.: Families of convex sets not representable by points. In: Bhattacharya, B.B., Sur-Kolay, S., Nandy, S.C., Bagchi, A. (eds.) Algorithms, Architectures and Information Systems Security. Statistical Science and Interdisciplinary Research, vol. 3, pp. 43---53. World Scientific, Hackensack (2009)
[27]
Padrol, A., Theran, L.: Delaunay triangulations with disconnected realization spaces. In: 30th Annual Symposium on Computational Geometry (SoCG'14), pp. 163---170. ACM, New York (2014)
[28]
Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Berlin (1996)
[29]
Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math. Z. 64, 79---102 (1956)
[30]
Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531---554. American Mathematical Society, Providence, RI (1991)
[31]
Tsukamoto, Y.: New examples of oriented matroids with disconnected realization spaces. Discrete Comput. Geom. 49(2), 287---295 (2013)
[32]
Vakil, R.: Murphy's law in algebraic geometry: badly-behaved deformation spaces. Invent. Math. 164(3), 569---590 (2006)

Cited By

View all
  • (2023)Bit-complexity of classical solutions of linear evolutionary systems of partial differential equationsJournal of Complexity10.1016/j.jco.2022.10172776:COnline publication date: 1-Jun-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 58, Issue 1
July 2017
253 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 July 2017

Author Tags

  1. 52A10
  2. 52C30
  3. 52C35
  4. 52C40
  5. Chirotope
  6. Convexity
  7. Oriented matroid
  8. Realization space

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Bit-complexity of classical solutions of linear evolutionary systems of partial differential equationsJournal of Complexity10.1016/j.jco.2022.10172776:COnline publication date: 1-Jun-2023

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media