Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Computing a Link Diagram From Its Exterior

Published: 02 August 2023 Publication History

Abstract

A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, and allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture.

References

[1]
Adams CC The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots 1994 New York W.H. Freeman
[2]
Adams CC Isometric cusps in hyperbolic 3-manifolds Mich. Math. J. 1999 46 3 515-531
[3]
Adams, C.: Triple crossing number of knots and links. J. Knot Theory Ramif. 22(2), # 1350006 (2013)
[4]
Baker, K.L.: A sketchy surgery description of the Seifert–Weber Dodecahedral space (2021). https://sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery
[5]
Baker, K.L., Kegel, M.: Census L-space knots are braid positive, except one that is not. Algebr. Geom. Topol. https://msp.org/soon/coming.php?jpath=agt
[6]
Baker MD, Goerner M, and Reid AW All principal congruence link groups J. Algebra 2019 528 497-504
[7]
Baker, M.D., Goerner, M., Reid, A.W.: All known principal congruence links (2019). arXiv:1902.04426
[8]
Bar-Natan D Fast Khovanov homology computations J. Knot Theory Ramif. 2007 16 3 243-255
[9]
Bering, E.A. IV: Surgery diagram for the Seifert–Weber space. MathOverflow, question # 137101 (2013). https://mathoverflow.net/q/137101
[10]
Burton, B.A.: The Pachner graph and the simplification of 3-sphere triangulations. In: 27th Annual Symposium on Computational Geometry (Paris 2011), pp. 153–162. ACM, New York (2011)
[11]
Burton, B.A.: Computational topology with Regina: algorithms, heuristics and implementations. In: Geometry and Topology Down Under. Contemporary Mathematics, vol. 597, pp. 195–224. American Mathematical Society, Providence (2013)
[12]
Burton, B.A.: The next 350 million knots. In: 36th International Symposium on Computational Geometry (2020). Leibniz Int. Proc. Inform., vol. 164, # 25. Leibniz-Zent. Inform., Wadern (2020)
[13]
Burton BA The cusped hyperbolic census is complete Trans. Am. Math. Soc. 2023
[14]
Burton BA, Rubinstein JH, and Tillmann S The Weber–Seifert dodecahedral space is non-Haken Trans. Am. Math. Soc. 2012 364 2 911-932
[15]
Burton, B.A., Budney, R., Pettersson, W.: Regina: software for low-dimensional topology. http://regina-normal.github.io/
[16]
Burton, B.A., Chang, H.-Ch., Löffler, M., Maria, C., de Mesmay, A., Schleimer, S., Sedgwick, E., Spreer, J.: Hard diagrams of the unknot. Exp. Math. (2023).
[17]
Champanerkar, A., Kofman, I., Mullen, T.: The 500 simplest hyperbolic knots. J. Knot Theory Ramif. 23(12), # 1450055 (2014)
[18]
Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of 3-manifolds, v. 3.1 (2022). https://snappy.computop.org
[19]
Dunfield, N.M.: A census of exceptional Dehn fillings. In: Characters in Low-Dimensional Topology (Montréal 2018). Contemporary Mathematics, vol. 760, pp. 143–155. American Mathematical Society, Providence (2020)
[20]
Dunfield NM, Obeidin M, and Rudd CG Code and data for computing a link diagram from its exterior Harvard Dataverse 2022
[21]
Dunfield, N.M., Obeidin, M., Rudd, C.G.: Computing a link diagram from its exterior. In: 38th International Symposium on Computational Geometry (Berlin 2022). Leibniz Int. Proc. Inform., vol. 224, # 37. Leibniz-Zent. Inform., Wadern (2022)
[22]
Dynnikov IA Three-page approach to knot theory. Encoding and local moves Funct. Anal. Appl. 1999 33 4 260-269
[23]
Dynnikov IA Arc-presentations of links: monotonic simplification Fund. Math. 2006 190 29-76
[24]
Dynnikov, I., Sokolova, V.: Multiflypes of rectangular diagrams of links. J. Knot Theory Ramif. 30(6), # 2150038 (2021)
[25]
Flapan E When Topology Meets Chemistry. Outlooks 2000 Cambridge Cambridge University Press
[26]
Flapan E, He A, and Wong H Topological descriptions of protein folding Proc. Natl. Acad. Sci. U.S.A. 2019 116 19 9360-9369
[27]
Freedman M, Gompf R, Morrison S, and Walker K Man and machine thinking about the smooth 4-dimensional Poincaré conjecture Quant. Topol. 2010 1 2 171-208
[28]
Gordon, C.McA., Luecke, J.: Knots are determined by their complements. J. AMS 2(2), 371–415 (1989)
[29]
Greene JE Alternating links and definite surfaces Duke Math. J. 2017 166 11 2133-2151
[30]
Haken W Theorie der Normalflächen Acta Math. 1961 105 245-375
[31]
Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems. J. ACM 46(2), 185–211 (1999)
[32]
Hodgson CD and Weeks JR Symmetries, isometries and length spectra of closed hyperbolic three-manifolds Exp. Math. 1994 3 4 261-274
[33]
Hoste J, Thistlethwaite M, and Weeks J The first 1,701,936 knots Math. Intell. 1998 20 4 33-48
[34]
Howie JA A characterisation of alternating knot exteriors Geom. Topol. 2017 21 4 2353-2371
[35]
Huszár, K., Spreer, J.: 3-manifold triangulations with small treewidth. In: 35th International Symposium on Computational Geometry (Portland 2019). Leibniz Int. Proc. Inform., vol. 129, # 44. Leibniz-Zent. Inform., Wadern (2019)
[36]
Ivanov SV The computational complexity of basic decision problems in 3-dimensional topology Geom. Dedicata 2008 131 1-26
[37]
Jaco W and Rubinstein JH 0-efficient triangulations of 3-manifolds J. Differ. Geom. 2003 65 1 61-168
[38]
Jaco, W., Rubinstein, J.H.: Layered-triangulations of 3-manifolds (2006). arXiv:math/0603601
[39]
Jaco W and Rubinstein JH Inflations of ideal triangulations Adv. Math. 2014 267 176-224
[40]
Jaco W and Sedgwick E Decision problems in the space of Dehn fillings Topology 2003 42 4 845-906
[41]
Jaeger F, Vertigan DL, and Welsh DJA On the computational complexity of the Jones and Tutte polynomials Math. Proc. Camb. Philos. Soc. 1990 108 1 35-53
[42]
Kuperberg G Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization Pac. J. Math. 2019 301 1 189-241
[43]
Lin F and Lipnowski M Monopole Floer homology, eigenform multiplicities, and the Seifert–Weber dodecahedral space Int. Math. Res. Not. 2022 2022 9 6540-6560
[44]
Makowsky JA Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width Discrete Appl. Math. 2005 145 2 276-290
[45]
Manolescu, C., Piccirillo, L.: From zero surgeries to candidates for exotic definite four-manifolds (2021). arXiv:2102.04391
[46]
Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. Algorithms and Computation in Mathematics, vol. 9. Springer, Berlin (2007)
[47]
de Mesmay, A., Rieck, Y., Sedgwick, E., Tancer, M.: The unbearable hardness of unknotting. Adv. Math. 381, # 107648 (2021)
[48]
Mijatović A Simplifying triangulations of S3 Pac. J. Math. 2003 208 2 291-324
[49]
Murasugi K On the braid index of alternating links Trans. Am. Math. Soc. 1991 326 1 237-260
[50]
Myers R Simple knots in compact, orientable 3-manifolds Trans. Am. Math. Soc. 1982 273 1 75-91
[52]
O’Hara J Energy of a knot Topology 1991 30 2 241-247
[53]
Ozsváth P and Szabó Z Bordered knot algebras with matchings Quant. Topol. 2019 10 3 481-592
[54]
Pachner U P.L. homeomorphic manifolds are equivalent by elementary shellings Eur. J. Combin. 1991 12 2 129-145
[55]
Peddada, S.R.T., Dunfield, N.M., Zeidner, L.E., James, K.A., Allison, J.T.: Systematic enumeration and identification of unique spatial topologies of 3D systems using spatial graph representations. In: 47th Design Automation Conference (2021). International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, vol. 3A, # V03AT03A042. ASME, New York (2021)
[56]
Piccirillo L The Conway knot is not slice Ann. Math. 2020 191 2 581-591
[57]
Piergallini, R.: Standard moves for standard polyhedra and spines. In: 3rd National Conference on Topology (Trieste 1986). Rend. Circ. Mat. Palermo Suppl., vol. 18, pp. 391–414. Circolo Matematico di Palermo, Palermo (1988)
[58]
Rolfsen, D.: Knots and Links. Mathematics Lecture Series, vol. 7. Publish or Perish, Houston (1990)
[59]
Schirra, S.: Robustness and precision issues in geometric computation. In: Handbook of Computational Geometry, pp. 597–632. North-Holland, Amsterdam (2000)
[60]
Schleimer, S.: Sphere recognition lies in NP. In: Low-Dimensional and Symplectic Topology (Athens 2009). Proc. Sympos. Pure Math., vol. 82, pp. 183–213. American Mathematical Society, Providence (2011)
[61]
Schütz D A fast algorithm for calculating S-invariants Glasg. Math. J. 2021 63 2 378-399
[63]
Segerman H Connectivity of triangulations without degree one edges under 2-3 and 3-2 moves Proc. Am. Math. Soc. 2017 145 12 5391-5404
[64]
Simon JK Energy functions for polygonal knots J. Knot Theory Ramif. 1994 3 3 299-320
[65]
Sundberg C and Thistlethwaite M The rate of growth of the number of prime alternating links and tangles Pac. J. Math. 1998 182 2 329-358
[66]
Szabó, Z.: Knot Floer homology calculator (2022). https://web.math.princeton.edu/~szabo/HFKcalc.html
[67]
Tillmann S Normal surfaces in topologically finite 3-manifolds Enseign. Math. 2008 54 3–4 329-380
[68]
Weber C and Seifert H Die beiden Dodekaederräume Math. Z. 1933 37 1 237-253
[69]
Weeks JR Convex hulls and isometries of cusped hyperbolic 3-manifolds Topol. Appl. 1993 52 2 127-149
[70]
Weeks, J.R.: Source code file close_cusps.c for SnapPea, v. 2.5 (circa 1995). https://github.com/3-manifolds/SnapPy/blob/master/kernel/kernel_code/
[71]
Weeks, J.: Computation of hyperbolic structures in knot theory. In: Handbook of Knot Theory, pp. 461–480. Elsevier, Amsterdam (2005)
[72]
Zentner R Integer homology 3-spheres admit irreducible representations in SL(2,C) Duke Math. J. 2018 167 9 1643-1712

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 71, Issue 1
Jan 2024
325 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 02 August 2023
Accepted: 26 March 2023
Revision received: 16 March 2023
Received: 24 July 2022

Author Tags

  1. Computational topology
  2. Low-dimensional topology
  3. Knot
  4. Knot exterior
  5. Knot diagram
  6. Link
  7. Link exterior
  8. Link diagram

Author Tags

  1. 57K10
  2. 57K30

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media