Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The communication complexity of addition

Published: 01 December 2015 Publication History

Abstract

Suppose each of k≤no(1) players holds an n-bit number xi in its hand. The players wish to determine if i≤kxi=s. We give a public-coin protocol with error 1% and communication O(k logk). The communication bound is independent of n, and for k 3 improves on the O(k logn) bound by Nisan (Bolyai Soc. Math. Studies; 1993).
Our protocol also applies to addition modulo m. In this case we give a matching (public-coin) Ω(k logk) lower bound for various m. We also obtain some lower bounds over the integers, including Ω (k log logk) for protocols that are one-way, like ours.
We give a protocol to determine if xi >s with error 1% and communication O(k logk) log n. For k 3 this improves on Nisan's O(k log2n) bound. A similar improvement holds for computing degree-(k 1) polynomial-threshold functions in the number-on-forehead model.
We give a (public-coin, 2-player, tight) Ω(logn) lower bound to determine if x1 >x2. This improves on the Ω( logn) bound by Smirnov (1988). Troy Lee informed us in January 2013 that an Ω(logn) lower bound may also be obtained by combining a result in learning theory by Forster et al. (2003) with a result by Linial and Shraibman (2009).
As an application, we show that polynomial-size AC0 circuits augmented with O(1) threshold (or symmetric) gates cannot compute cryptographic pseudorandom functions, extending the result about AC0 by Linial, Mansour, and Nisan (J. ACM; 1993).

References

[1]
J. Aspnes, R. Beigel, M. Furst and S. Rudich: The expressive power of voting polynomials, Combinatorica 14 (1994), 135-148.
[2]
N. Alon, O. Goldreich, J. Håstad and R. Peralta: Simple constructions of almost k -wise independent random variables, Random Structures & Algorithms 3 (1992), 289-304.
[3]
P. Beame: A switching lemma primer, Technical Report UW-CSE-95-07-01 , Department of Computer Science and Engineering, University of Washington, November 1994, Available from http://www.cs.washington.edu/homes/beame/.
[4]
R. Beigel: When do extra majority gates help? polylog( N ) majority gates are equivalent to one, Comput. Complexity 4 (1994), 314-324.
[5]
L. Babai, N. Nisan and M. Szegedy: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs, J. of Computer and System Sciences 45 (1992), 204-232.
[6]
M. Ben-Or and A. Hassidim: The bayesian learner is optimal for noisy binary search (and pretty good for quantum as well), in: IEEE Symp. on Foundations of Computer Science (FOCS) , 221-230, 2008.
[7]
R. Boppana and M. Sipser: The complexity of finite functions, in: Handbook of theoretical computer science, Vol. A , 757-804. Elsevier, Amsterdam, 1990.
[8]
A. Bogdanov and E. Viola: Pseudorandom bits for polynomials, SIAM J. on Computing 39 (2010), 2464-2486.
[9]
A. Baker and G. Wüstholz: Logarithmic forms and Diophantine geometry , volume 9 of New Mathematical Monographs , Cambridge University Press, 2007.
[10]
M. Braverman and O. Weinstein: A discrepancy lower bound for information complexity, in: Workshop on Randomization and Computation (RANDOM) , 459-470, 2012.
[11]
A. K. Chandra, M. L. Furst and R. J. Lipton: Multi-party protocols, in: 15th ACM Symp. on the Theory of Computing (STOC) , 94-99, 1983.
[12]
I. Csiszár and J. Körner: Information Theory: Coding Theorems for Discrete Memoryless Systems , Academic Press, Inc., 1982.
[13]
A. Cobham: The intrinsic computational difficulty of functions, in: Int. Congress for Logic, Methodology and Philosophy of Science , 24-30, 1964.
[14]
F. R. K. Chung and P. Tetali: Communication complexity and quasi randomness, SIAM J. Discrete Math. 6 (1993), 110-123.
[15]
M. Dietzfelbinger, T. Hagerup, J. Katajainen and M. Penttonen: A reliable randomized algorithm for the closest-pair problem, J. Algorithms 25 (1997), 19-51.
[16]
C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun and E. Viola: On the complexity of information spreading in dynamic networks, in: ACM-SIAM Symp. on Discrete Algorithms (SODA) , 2013.
[17]
U. Feige, P. Raghavan, D. Peleg and E. Upfal: Computing with noisy information, SIAM J. Comput. 23 (1994), 1001-1018.
[18]
M. L. Furst, J. B. Saxe and M. Sipser: Parity, circuits, and the polynomial-time hierarchy, Mathematical Systems Theory 17 (1984), 13-27.
[19]
J. Forster, N. Schmitt, H.-U. Simon and T. Suttorp: Estimating the optimal margins of embeddings in euclidean half spaces, Machine Learning 51 (2003), 263-281.
[20]
O. Goldreich, S. Goldwasser and S. Micali: How to construct random functions, J. of the ACM 33 (1986), 792-807.
[21]
M. Goldmann, J. Håstad and A. A. Razborov: Majority gates vs. general weighted threshold gates, Computational Complexity 2 (1992), 277-300.
[22]
P. Gopalan and R. A. Servedio: Learning and lower bounds for AC 0 with threshold gates, in: Workshop on Randomization and Computation (RANDOM) , 588-601, 2010.
[23]
J. Håstad: Computational limitations of small-depth circuits , MIT Press, 1987.
[24]
J. Håstad: On the size of weights for threshold gates, SIAM J. Discrete Math. 7 (1994), 484-492.
[25]
J. Håstad and M. Goldmann: On the power of small-depth threshold circuits, Comput. Complexity 1 (1991), 113-129.
[26]
M. Krause and S. Lucks: On the minimal hardware complexity of pseudorandom function generators, in: Symp. on Theoretical Aspects of Computer Science (STACS) , 419-430, 2001.
[27]
E. Kushilevitz and N. Nisan: Communication complexity , Cambridge University Press, 1997.
[28]
L. A. Levin: One way functions and pseudorandom generators, Combinatorica 7 (1987), 357-363.
[29]
N. Linial, Y. Mansour and N. Nisan: Constant depth circuits, Fourier transform, and learnability, J. of the ACM 40 (1993), 607-620.
[30]
N. Linial and A. Shraibman: Learning complexity vs communication complexity, Combinatorics, Probability & Computing 18 (2009), 227-245.
[31]
P. Bro Miltersen, N. Nisan, S. Safra and A. Wigderson: On data structures and asymmetric communication complexity, J. of Computer and System Sciences , 57 (1998), 37-49.
[32]
S. Muroga, I. Toda and S. Takasu: Theory of majority decision elements, J. Franklin Inst. 271 (1961), 376-418.
[33]
S. Muroga: Threshold logic and its applications , Wiley-Interscience, New York, 1971.
[34]
V. A. Nepomnja¿¿ii: Rudimentary predicates and Turing calculations, Soviet Mathematics-Doklady 11 (1970), 1462-1465.
[35]
N. Nisan: The communication complexity of threshold gates, in: Combinatorics, Paul Erdos is Eighty, number 1 in Bolyai Society Mathematical Studies , 301-315, 1993.
[36]
J. Naor and M. Naor: Small-bias probability spaces: efficient constructions and applications, SIAM J. on Computing 22 (1993), 838-856.
[37]
M. Naor and O. Reingold: Synthesizers and their application to the parallel construction of pseudo-random functions, J. Comput. Syst. Sci. 58 (1999), 336-375.
[38]
M. Naor and O. Reingold: Number-theoretic constructions of efficient pseudo-random functions, J. of the ACM 51 (2004), 231-262.
[39]
M. Naor, O. Reingold and A. Rosen: Pseudorandom functions and factoring, SIAM J. Comput. 31 (2002), 1383-1404.
[40]
N. Nisan and D. Zuckerman: Randomness is linear in space, J. of Computer and System Sciences 52 (1996), 43-52.
[41]
V. Podol'skii: Perceptrons of large weight, Problems of Information Transmission 45 (2009), 46-53.
[42]
R. Raz: The BNS-Chung criterion for multi-party communication complexity, Comput. Complexity 9 (2000), 113-122.
[43]
A. Razborov and S. Rudich: Natural proofs, J. of Computer and System Sciences 55 (1997), 24-35.
[44]
D. V. Smirnov: Shannon's information methods for lower bounds for probabilistic communication complexity, Master's thesis, Moscow University, 1988.
[45]
H. Straubing and D. Thérien: A note on modp - modm circuits, Theory Comput. Syst. 39 (2006), 699-706.
[46]
R. Shaltiel and E. Viola: Hardness amplification proofs require majority, SIAM J. on Computing 39 (2010), 3122-3154.
[47]
E. Viola: Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates, SIAM J. on Computing 36 (2007), 1387-1403.
[48]
E. Viola: Cell-probe lower bounds for prefix sums, 2009, arXiv:0906.1370v1.
[49]
E. Viola and A. Wigderson: Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols, Theory of Computing 4 (2008), 137-168.

Cited By

View all
  • (2024)Distributed Thresholded Counting with Limited InteractionProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671868(4664-4675)Online publication date: 25-Aug-2024
  • (2024)No Complete Problem for Constant-Cost Randomized CommunicationProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649716(1287-1298)Online publication date: 10-Jun-2024
  • (2024)Hardness Condensation by RestrictionProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649711(2016-2027)Online publication date: 10-Jun-2024
  • Show More Cited By
  1. The communication complexity of addition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Combinatorica
    Combinatorica  Volume 35, Issue 6
    December 2015
    105 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 December 2015

    Author Tags

    1. 68Q10
    2. 68Q17

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Distributed Thresholded Counting with Limited InteractionProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671868(4664-4675)Online publication date: 25-Aug-2024
    • (2024)No Complete Problem for Constant-Cost Randomized CommunicationProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649716(1287-1298)Online publication date: 10-Jun-2024
    • (2024)Hardness Condensation by RestrictionProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649711(2016-2027)Online publication date: 10-Jun-2024
    • (2024)A New Information Complexity Measure for Multi-pass Streaming with ApplicationsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649672(1781-1792)Online publication date: 10-Jun-2024
    • (2023)Arithmetic SketchingAdvances in Cryptology – CRYPTO 202310.1007/978-3-031-38557-5_6(171-202)Online publication date: 20-Aug-2023
    • (2023)The Communication Complexity of Functions with Large OutputsStructural Information and Communication Complexity10.1007/978-3-031-32733-9_19(427-458)Online publication date: 6-Jun-2023
    • (2022)Extremely efficient constructions of hash functions, with applications to hardness magnification and PRFsProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.23(1-37)Online publication date: 20-Jul-2022
    • (2022)The exact complexity of pseudorandom functions and the black-box natural proof barrier for bootstrapping results in computational complexityProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520010(962-975)Online publication date: 9-Jun-2022
    • (2022)SETH-based Lower Bounds for Subset Sum and Bicriteria PathACM Transactions on Algorithms10.1145/345052418:1(1-22)Online publication date: 23-Jan-2022
    • (2021)Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf GatesACM Transactions on Computation Theory10.1145/347086113:4(1-37)Online publication date: 1-Sep-2021
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media