Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Twenty (Short) Questions

Published: 01 June 2019 Publication History

Abstract

A basic combinatorial interpretation of Shannon’s entropy function is via the “20 questions” game. This cooperative game is played by two players, Alice and Bob: Alice picks a distribution π over the numbers {1, …, n}, and announces it to Bob. She then chooses a number x according to π, and Bob attempts to identify x using as few Yes/No queries as possible, on average.
An optimal strategy for the “20 questions” game is given by a Huffman code for π: Bob’s questions reveal the codeword for x bit by bit. This strategy finds x using fewer than H(π) + 1 questions on average. However, the questions asked by Bob could be arbitrary. In this paper, we investigate the following question: Are there restricted sets of questions that match the performance of Huffman codes, either exactly or approximately?
Our main result gives a set $$\mathcal{Q}$$ of 1.25 n+o(n) questions such that for every distribution π, Bob can implement an optimal strategy for π using only questions from $$\mathcal{Q}$$. We also show that 1.25 no(n) allowed questions are needed, for infinitely many n. When allowing a small slack of r questions for identifying x over the optimal strategy, we show that a set of roughly (rn)Θ(1/r) allowed questions is necessary and sufficient.

References

[1]
R. Ahlswede and I. Wegener: Search problems, John Wiley & Sons, Inc., New York, 1987.
[2]
J. A. Aslam and A. Dhagat: Searching in the presence of linearly bounded errors, in: Proceedings of the twenty-third annual ACM symposium on Theory of computing (STOC’ 91), 486–493, 1991.
[3]
H. Aydinian, F. Cicalese and C. Deppe, eds.: Information Theory, Combinatorics, and Search Theory, Springer-Verlag Berlin Heidelberg, 2013.
[4]
D. W. Boyd: The asymptotic number of solutions of a diophantine equation from coding theory, Journal of Combinatorial Theory, Ser. A 18 (1975), 210–215.
[5]
R. M. Capocelli, R. Giancarlo and I. J. Taneja: Bounds on the redundancy of Huffman codes, IEEE Transactions on Information Theory IT-32 (1986), 854–857.
[6]
T. M. Cover and J. A. Thomas: Elements of information theory (2. ed.), Wiley, 2006.
[7]
Y. Dagan, Y. Filmus and S. Moran: Comparison and equality queries achieve optimal redundancy, in preparation.
[8]
A. Dhagat, P. Gács and P. Winkler: On playing “twenty questions” with a liar, in: Proceedings of 3rd Symposium on Discrete Algorithms (SODA’92), 16–22, 1992.
[9]
R. Dorfman: The detection of defective members of large populations, The Annals of Mathematical Statistics 14 (1943), 436–440.
[10]
D.-Z. Du and F. K. Hwang: Combinatorial Group Testing and Its Applications, volume 12 of Series on Applied Mathematics, World Scientific, 2nd edition, 1999.
[11]
M. L. Fredman: How good is the information theory bound in sorting? Theoretical Computer Science 1 (1976), 355–361.
[12]
R. G. Gallager: Variations on a theme by Huffman, IEEE Transactions on Information Theory IT-24 (1987), 668–674.
[13]
E. N. Gilbert and E. F. Moore: Variable-length binary encodings, Bell System Technical Journal 38 (1959), 933–967.
[14]
Y. Horibe: An improved bound for weight-balanced tree, Information and Control 34 (1977), 148–151.
[15]
D. A. Huffman: A method for the construction of minimum-redundancy codes, in: Proceedings of the I.R.E., 1098–1103, 1952.
[16]
O. Johnsen: On the redundancy of binary Huffman codes, IEEE Transactions on Information Theory IT-26 (1980), 220–222.
[17]
Gy. O. H. Katona: Combinatorial search problems, in: J. N. Srivastava et al., editor, A Survery of Combinatorial Theory, North-Holland Publishing Company, 1973.
[18]
P. Klein and N. E. Young: On the number of iterations for Dantzig-Wolfe optimization and packing-covering approximation algorithms, SIAM Journal on Computing 44 (2015), 1154–1172.
[19]
D. Krenn and S. Wagner: Compositions into powers of b: asymptotic enumeration and parameters, Algorithmica 75 (2016), 606–631.
[20]
Z. Lonc and I. Rival: Chains, antichains, and fibres, Journal of Combinatorial Theory, Series A 44 (1987), 207–228.
[21]
D. Manstetten: Tight bounds on the redundancy of Huffman codes, IEEE Transactions on Information Theory IT-38 (1992), 144–151.
[22]
S. Mohajer, P. Pakzad and A. Kakhbod: Tight bounds on the redundancy of Huffman codes, in: Information Theory Workshop (ITW’ 06), 131–135, 2006.
[23]
B. L. Montgomery and J. Abrahams: On the redundancy of optimal binary prefix- condition codes for finite and infinite sources, IEEE Transactions on Information Theory IT-33 (1987), 156–160.
[24]
S. Moran and A. Yehudayoff: A note on average-case sorting, Order 33 (2016), 23–28.
[25]
N. Nakatsu: Bounds on the redundancy of binary alphabetical codes, IEEE Transactions on Information Theory IT-37 (1991), 1225–1229.
[26]
J. Rissanen: Bounds for weight balanced trees, IBM Journal of Research and Development 17 (1973), 101–105.
[27]
R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann and J. Spencer: Coping with errors in binary search procedures, Journal of Computer and System Sciences 20 (1980), 396–404.
[28]
J. Spencer and P. Winkler: Three thresholds for a liar, Combinatorics, Probability and Computing 1 (1992), 81–93.

Cited By

View all

Index Terms

  1. Twenty (Short) Questions
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Combinatorica
      Combinatorica  Volume 39, Issue 3
      Jun 2019
      237 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 June 2019

      Author Tags

      1. 94A50
      2. 90B40
      3. 68E05

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 16 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media