Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

One-step graph-based incomplete multi-view clustering

Published: 19 January 2024 Publication History

Abstract

Existing graph-based incomplete multi-view clustering methods mainly adopt the three-step strategy, i.e., graph completion, graph fusion (consensus representation learning) and subsequent k-means clustering. Such three-step schemes inevitably seek sub-optimal clustering results due to information loss. Besides, existing methods for incomplete multi-view clustering tasks focus on inferring the missing instances using global complementary information without considering the local structure of data. In addition, their weight allocation strategies for views are mostly static, the model cannot adaptively select the informative views during the process of training. To solve these issues, we propose a novel one-step graph-based incomplete multi-view clustering (OGIMC) method, which introduces the strategy of local structure preservation and adaptive weights into the model. Furthermore, a rank constraint imposed on the Laplacian matrix of the fused graph integrates the separate objectives into a unified training framework. Extensive experimental results demonstrated that OGIMC outperforms state-of-the-art baselines remarkably.

References

[1]
Bhadra S, Kaski S, and Rousu J Multi-view kernel completion Mach. Learn. 2017 106 5 713-739
[2]
Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, Citeseer, pp. 19–26 (2004)
[3]
Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation IEEE Trans. Pattern Anal. Mach. Intell. 2010 33 8 1548-1560
[4]
Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: Twenty-Third International Joint Conference on Artificial Intelligence, Citeseer (2013)
[5]
Cao, X., Zhang, C., Fu, H., et al.: Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–594 (2015)
[6]
Chaudhuri, K., Kakade, S.M., Livescu, K., et al.: Multi-view clustering via canonical correlation analysis. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 129–136 (2009)
[7]
Chen Y, Wang S, Peng C, et al. Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering IEEE Trans. Image Process. 2021 30 4022-4035
[8]
Chen Y, Wang S, Xiao X, et al. Self-paced enhanced low-rank tensor kernelized multi-view subspace clustering IEEE Trans. Multimedia 2022 24 4054-4066
[9]
Chung, F.R., Graham, F.C.: Spectral Graph Theory, vol 92. American Mathematical Soc (1997)
[10]
Djelouah, A., Franco, J.S., Boyer, E. et al.: Multi-view object segmentation in space and time. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2647 (2013)
[11]
Djelouah A, Franco JS, Boyer E, et al. Sparse multi-view consistency for object segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2014 37 9 1890-1903
[12]
Duchi, J., Shalev-Shwartz, S., Singer, Y., et al.: Efficient projections onto the l1-ball for learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, pp. 272–279 (2008)
[13]
Fan K On a theorem of weyl concerning eigenvalues of linear transformations i Proc. Natl. Acad. Sci. 1949 35 11 652-655
[14]
Gao, H., Nie, F., Li, X., et al.: Multi-view subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4238–4246 (2015)
[15]
Gönen, M., Margolin, A.A.: Localized data fusion for kernel k-means clustering with application to cancer biology. Adv. Neural Inf. Process. Syst. 27 (2014)
[16]
Greene, D., Cunningham, P.: Practical solutions to the problem of diagonal dominance in kernel document clustering. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 377–384 (2006)
[17]
Gu, Z., Feng, S.: Individuality meets commonality: A unified graph learning framework for multi-view clustering. ACM Trans. Knowl. Discov. Data (TKDD) (2022)
[18]
Houthuys L, Langone R, and Suykens JA Multi-view kernel spectral clustering Inf. Fusion 2018 44 46-56
[19]
Hu, M., Chen, S.: Doubly aligned incomplete multi-view clustering (2019). arXiv preprint arXiv:1903.02785
[20]
Hu, M., Chen, S.: One-pass incomplete multi-view clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3838–3845 (2019)
[21]
Huang, J., Nie, F., Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
[22]
Huang, S., Tsang, I., Xu, Z., et al.: Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Trans. Knowl. Data Eng. (2021)
[23]
Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. Adv. Neural Inf. Process. Syst. 24 (2011)
[24]
Kumar, R., Chen, T., Hardt, M., et al.: Multiple kernel completion and its application to cardiac disease discrimination. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, pp. 764–767 (2013)
[25]
Li, S.Y., Jiang, Y., Zhou, Z.H.: Partial multi-view clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence (2014)
[26]
Li, C., Bai, J., Hager, G.D.: A unified framework for multi-view multi-class object pose estimation. In: Proceedings of the European Conference on Computer Vision (eccv), pp. 254–269 (2018)
[27]
Liu, J., Wang, C., Gao, J., et al.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, pp. 252–260 (2013)
[28]
Liu X, Zhu X, Li M, et al. Late fusion incomplete multi-view clustering IEEE Trans. Pattern Anal. Mach. Intell. 2018 41 10 2410-2423
[29]
Liu, X., Zhu, X., Li, M., et al.: Efficient and effective incomplete multi-view clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4392–4399 (2019)
[30]
Lu, X., Feng, S.: Structure diversity-induced anchor graph fusion for multi-view clustering. ACM Trans. Knowl. Discov. Data (TKDD) (2022)
[31]
Nie, F., Li, J., Li, X., et al.: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification. In: IJCAI, pp. 1881–1887 (2016)
[32]
Nie, F., Wang, X., Jordan, M., et al.: The constrained laplacian rank algorithm for graph-based clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence (2016)
[33]
Nie, F., Li, J., Li, X., et al.: Self-weighted multiview clustering with multiple graphs. In: IJCAI, pp. 2564–2570 (2017)
[34]
Oellermann OR and Schwenk AJ The Laplacian spectrum of graphs Gr. Theory c Appl. 1991 2 871-898
[35]
Pedrycz W Collaborative fuzzy clustering Pattern Recogn. Lett. 2002 23 14 1675-1686
[36]
Rai, P., Trivedi, A., Daumé III, H., et al.: Multiview clustering with incomplete views. In: Proceedings of the NIPS Workshop on Machine Learning for Social Computing, Citeseer (2010)
[37]
Rai, N., Negi, S., Chaudhury, S., et al.: Partial multi-view clustering using graph regularized nmf. In: 2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, pp. 2192–2197 (2016)
[38]
Shao, W., He, L., Yu, P.S.: Clustering on multi-source incomplete data via tensor modeling and factorization. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp. 485–497 (2015)
[39]
Shao, W., He, L., Yu, P.S.: Multiple incomplete views clustering via weighted nonnegative matrix factorization with l2,1 regularization. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 318–334 (2015)
[40]
Shao, W., He, L., Lu, Ct, et al.: Online multi-view clustering with incomplete views. In: 2016 IEEE International Conference on Big Data (Big Data), IEEE, pp. 1012–1017 (2016)
[41]
Tao, H., Hou, C., Zhu, J., et al.: Multi-view clustering with adaptively learned graph. In: Asian Conference on Machine Learning, PMLR, pp. 113–128 (2017)
[42]
Tzortzis, G., Likas, A.: Kernel-based weighted multi-view clustering. In: 2012 IEEE 12th International Conference on Data Mining, IEEE, pp. 675–684 (2012)
[43]
Wang H, Yang Y, and Liu B Gmc: Graph-based multi-view clustering IEEE Trans. Knowl. Data Eng. 2019 32 6 1116-1129
[44]
Wen J, Xu Y, and Liu H Incomplete multiview spectral clustering with adaptive graph learning IEEE Trans. Cybern. 2018 50 4 1418-1429
[45]
Wen, J., Zhang, Z., Xu, Y., et al.: Incomplete multi-view clustering via graph regularized matrix factorization. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
[46]
Wen J, Zhong Z, Zhang Z, et al. Adaptive locality preserving regression IEEE Trans. Circuits Syst. Video Technol. 2018 30 1 75-88
[47]
Wen J, Yan K, Zhang Z, et al. Adaptive graph completion based incomplete multi-view clustering IEEE Trans. Multimedia 2020 23 2493-2504
[48]
Wen J, Zhang Z, Zhang Z, et al. Generalized incomplete multiview clustering with flexible locality structure diffusion IEEE Trans. Cybern. 2020 51 1 101-114
[49]
Wen, J., Zhang, Z., Fei, L., et al.: A survey on incomplete multiview clustering. IEEE Trans. Syst. Man Cybern. Syst. (2022)
[50]
Xu J, Ren Y, Li G, et al. Deep embedded multi-view clustering with collaborative training Inf. Sci. 2021 573 279-290
[51]
Yang M, Li Y, Hu P, et al. Robust multi-view clustering with incomplete information IEEE Trans. Pattern Anal. Mach. Intell. 2022 45 1055-1069
[52]
Yi S, Liang Y, He Z, et al. Dual pursuit for subspace learning IEEE Trans. Multimedia 2018 21 6 1399-1411
[53]
Yin, Q., Wu, S., Wang, L.: Incomplete multi-view clustering via subspace learning. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 383–392 (2015)
[54]
Zhan K, Nie F, Wang J, et al. Multiview consensus graph clustering IEEE Trans. Image Process. 2018 28 3 1261-1270
[55]
Zhang Z, Liu L, Shen F, et al. Binary multi-view clustering IEEE Trans. Pattern Anal. Mach. Intell. 2018 41 7 1774-1782
[56]
Zhang Z, Lai Z, Huang Z, et al. Scalable supervised asymmetric hashing with semantic and latent factor embedding IEEE Trans. Image Process. 2019 28 10 4803-4818
[57]
Zhang GY, Zhou YR, He XY, et al. One-step kernel multi-view subspace clustering Knowl.-Based Syst. 2020 189
[58]
Zhao, H., Liu, H., Fu, Y.: Incomplete multi-modal visual data grouping. In: IJCAI, pp. 2392–2398 (2016)
[59]
Zhao L, Chen Z, Yang Y, et al. Incomplete multi-view clustering via deep semantic mapping Neurocomputing 2018 275 1053-1062
[60]
Zhao J, Lyu G, and Feng S Linear neighborhood reconstruction constrained latent subspace discovery for incomplete multi-view clustering Appl. Intell. 2022 52 1 982-993
[61]
Zhou, W., Wang, H., Yang, Y.: Consensus graph learning for incomplete multi-view clustering. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp. 529–540 (2019)
[62]
Zhu X, Zhang S, He W, et al. One-step multi-view spectral clustering IEEE Trans. Knowl. Data Eng. 2018 31 10 2022-2034

Index Terms

  1. One-step graph-based incomplete multi-view clustering
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Multimedia Systems
        Multimedia Systems  Volume 30, Issue 1
        Feb 2024
        905 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 19 January 2024
        Accepted: 08 December 2023
        Received: 05 September 2023

        Author Tags

        1. Incomplete multi-view clustering
        2. Graph completion
        3. Local structure preservation
        4. Rank constraint

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 13 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media