Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Spatio-temporal data reduction with deterministic error bounds

Published: 01 September 2006 Publication History

Abstract

A common way of storing spatio-temporal information about mobile devices is in the form of a 3D (2D geography + time) trajectory. We argue that when cellular phones and Personal Digital Assistants become location-aware, the size of the spatio-temporal information generated may prohibit efficient processing. We propose to adopt a technique studied in computer graphics, namely line-simplification, as an approximation technique to solve this problem. Line simplification will reduce the size of the trajectories. Line simplification uses a distance function in producing the trajectory approximation. We postulate the desiderata for such a distance-function: it should be sound, namely the error of the answers to spatio-temporal queries must be bounded. We analyze several distance functions, and prove that some are sound in this sense for some types of queries, while others are not. A distance function that is sound for all common spatio-temporal query types is introduced and analyzed. Then we propose an aging mechanism which gradually shrinks the size of the trajectories as time progresses. We also propose to adopt existing linguistic constructs to manage the uncertainty introduced by the trajectory approximation. Finally, we analyze experimentally the effectiveness of line-simplification in reducing the size of a trajectories database.

References

[1]
1. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 1019-1030 (2003).
[2]
2. Schiller, J., Voisard, A. (eds.): Location-Based Services. Morgan Kaufmann (2004).
[3]
3. Wolfson, O.: Moving objects information management: The database challenge. In: Proceedings of the 5th Workshop on Next Generation Information Technologies and Systems (NGITS'2002) (2002).
[4]
4. Hightower, J., Borriella, G.: Location systems for ubiquitous computing. IEEE Comput. 34(8), 57-66 (2001).
[5]
5. Snyder, J.P., Tobler, W.R., Yang, O.H., Yang, Q.H.: Map Projection Transformations: Principles and Applications. CRC, Boca Raton, FL (2000).
[6]
6. Arctur, D., Zeiler, M.: Designing Geodatabases: Case Studies in GIS Data Modeling.
[7]
7. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS '98: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, p. 188 (1998).
[8]
8. Veijalainen, J., Ojanen, E., Haq, M.A., Vahteala, V.-P., Matsumoto, M.: Energy consumption tradeoffs for compressed wireless data at a mobile terminal. IEICE Trans., Spec. Issu. Multimedia Commun. E87-B(5), 1123-1130 (2004).
[9]
9. Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approximating polygonal chains. Discrete Comput. Geom. 23, 273-291 (2000).
[10]
10. Chan, W., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geom. Appl. 6, 50-77 (1996).
[11]
11. Douglas, D., Peuker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartographer 10(2), 112-122 (1973).
[12]
12. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. In: The 5th International Symposium on Spatial Data Handling (1992).
[13]
13. Imai, H., Iri, M.: Polygonal approximations of a curve-formulations and algorithms. In: Comput. Morphol., pp. 71-86 (1988).
[14]
14. McMaster, R.: Automated line generalization. Cartographica 24(2), 74-111 (1987).
[15]
15. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guarantees. In: Proceedings of ACM SIGMOD, pp. 476-487 (2002).
[16]
16. Special issue on data reduction techniques. IEEE Data Eng. 20 (1998).
[17]
17. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving objects databases. ACM Trans. Database Syst. (TODS) 29(3), 463-507 (2004).
[18]
18. Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: The 81th Annual Meeting of the Transportation Research Board. Washington, DC (2002).
[19]
19. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assistants. Transp. Res. Part C 8, 91-108 (2000).
[20]
20. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 395-406 (2000).
[21]
21. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multi-dimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673-684. San Jose, CA (2002).
[22]
22. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation A survey. Technical Report B 96-11 (1996).
[23]
23. Weibel, R.: Generalization of spatial data: Principles and selected algorithms. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) Algorithmic Foundations of Geographic Information Systems. LNCS Springer-Verlag, Berlin Heidelberg New York (1998).
[24]
24. Veltkamp, R.C.: Hierarchical approximation and localization. Vis. Comput. 14(10), 471-487 (1998).
[25]
25. Hardle, V., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation, and Statistical Applications. Springer, Berlin Heidelberg New York (1998).
[26]
26. Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 93-102 (1993).
[27]
27. Graefe, G., Shapiro, L.D.: Data compression and database performance. In: Proceedings of the ACM/IEEE-CS Symposium on Applied Computing (1991).
[28]
28. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and performance of compressed databases. SIGMOD Rec. 29(3), 55-67 (2000).
[29]
29. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 271-282. ACM (2001).
[30]
30. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of approximate histograms. ACM Trans. Database Syst. 27(3), 261-298 (2002).
[31]
31. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB J. 10(2-3), 199-223 (2001).
[32]
32. Pitoura, E., Samaras, G.: Locating objects in mobile computing. IEEE Trans. Knowledge Data Eng. 13(4), 571-592 (2001).
[33]
33. Florizzi, L., Gutting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. SIGMOD Rec. 29, 319-330 (2000)
[34]
34. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N., Nardeli, E., Schneider, M., Viqueira, J.R.R.: Spatio-temporal models and languages: An approach based on data types. In: Spatio-Temporal Databases: The Chorochronos Approach (2003).
[35]
35. Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardeli, E., Schneider, M.: Algorithms for moving objects databases. Comput. J. 46(6), 680-712 (2003).
[36]
36. Vazirgiannis, M., Wolfson, O.: A spatio-temporal model and language for moving objects on road networks. In: SSTD '01: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, pp. 20-35 (2001).
[37]
37. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J. Comput. Syst. Sci. 66(1), 207-243 (2003).
[38]
38. Kollios, D., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 261- 272 (1999).
[39]
39. Pfoser, D., Jensen, C.: Capturing the uncertainty of moving objects representation. In: Advances in Spatial Databases, 6th International Symposium, SSD'99, pp. 111-132 (1999).
[40]
40. Koubarakis, M., Sellis, T., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E., Pernici, B., Scheck, H.-J., Scholl, M., Theodoulidis, B., Tryfona, N. (eds.): Spatio-Temporal Databases--The CHOROCHRONOS Approach. Springer-Verlag, Berlin Heidelberg New York (2003).
[41]
41. Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation networks. In: International Conference on Scientific and Statistical Database Management (SSDB), pp. 287-296 (2004).
[42]
42. Ding, Z., Güting, R.H.: Uncertainty management for networks-constrained moving objects. In: International Conference on Database and Expert Systems Applications (DEXA), pp. 411-421 (2004).

Cited By

View all
  • (2024)Compressing generalized trajectories of molecular motion for efficient detection of chemical interactionsInformation Systems10.1016/j.is.2024.102426125:COnline publication date: 1-Nov-2024
  • (2022)Spatial Data Quality in the IoT Era: Management and ExploitationProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3522568(2474-2482)Online publication date: 10-Jun-2022
  • (2022)Spatial Data Quality in the Internet of Things: Management, Exploitation, and ProspectsACM Computing Surveys10.1145/349833855:3(1-41)Online publication date: 3-Feb-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 15, Issue 3
September 2006
100 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2006

Author Tags

  1. Data reduction
  2. Line simplification
  3. Moving objects database
  4. Uncertainty

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)5
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Compressing generalized trajectories of molecular motion for efficient detection of chemical interactionsInformation Systems10.1016/j.is.2024.102426125:COnline publication date: 1-Nov-2024
  • (2022)Spatial Data Quality in the IoT Era: Management and ExploitationProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3522568(2474-2482)Online publication date: 10-Jun-2022
  • (2022)Spatial Data Quality in the Internet of Things: Management, Exploitation, and ProspectsACM Computing Surveys10.1145/349833855:3(1-41)Online publication date: 3-Feb-2022
  • (2022)Experiments and Analyses of Anonymization Mechanisms for Trajectory Data PublishingJournal of Computer Science and Technology10.1007/s11390-022-2409-x37:5(1026-1048)Online publication date: 1-Oct-2022
  • (2022)Optimizing vessel trajectory compression for maritime situational awarenessGeoinformatica10.1007/s10707-022-00475-027:3(565-591)Online publication date: 29-Aug-2022
  • (2022)Generalization Aware Compression of Molecular TrajectoriesAdvances in Databases and Information Systems10.1007/978-3-031-15740-0_20(270-284)Online publication date: 5-Sep-2022
  • (2021)Error Bounded Line Simplification Algorithms for Trajectory Compression: An Experimental EvaluationACM Transactions on Database Systems10.1145/347437346:3(1-44)Online publication date: 28-Sep-2021
  • (2021)Differentially private and utility-aware publication of trajectory dataExpert Systems with Applications: An International Journal10.1016/j.eswa.2021.115120180:COnline publication date: 15-Oct-2021
  • (2020)Fine-Tuned Compressed Representations of Vessel TrajectoriesProceedings of the 29th ACM International Conference on Information & Knowledge Management10.1145/3340531.3412706(2429-2436)Online publication date: 19-Oct-2020
  • (2020)Progressive simplification of polygonal curvesComputational Geometry: Theory and Applications10.1016/j.comgeo.2020.10162088:COnline publication date: 1-Jul-2020
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media