Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Particle number conservation and block structures in matrix product states

Published: 01 June 2022 Publication History

Abstract

The eigenvectors of the particle number operator in second quantization are characterized by the block sparsity of their matrix product state representations. This is shown to generalize to other classes of operators. Imposing block sparsity yields a scheme for conserving the particle number that is commonly used in applications in physics. Operations on such block structures, their rank truncation, and implications for numerical algorithms are discussed. Explicit and rank-reduced matrix product operator representations of one- and two-particle operators are constructed that operate only on the non-zero blocks of matrix product states.

References

[1]
Absil P-A, Mahony R, and Sepulchre R Optimization algorithms on matrix manifolds 2008 Princeton Princeton University Press
[2]
Bachmayr M, Cohen A, and Dahmen W Parametric PDEs: Sparse or low-rank approximations? IMA J. Numer. Anal. 2018 38 1661-1708
[3]
Bachmayr M and Kazeev V Stability of low-rank tensor representations and structured multilevel preconditioning for elliptic PDEs Found. Comput. Math. 2020 20 1175-1236
[4]
Bachmayr M, Schneider R, and Uschmajew A Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations Found. Comput. Math. 2016 16 6 1423-1472
[5]
Bauer B, Corboz P, Orús R, and Troyer M Implementing global Abelian symmetries in projected entangled-pair state algorithms Phys. Rev. B. 2011 83 12 125106
[6]
Chan GK-L, Keselman A, Nakatani N, Li Z, and White SR Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms J. Chem. Phys. 2016 145 1 014102
[7]
Crosswhite GM and Bacon D Finite automata for caching in matrix product algorithms Phys. Rev. A. 2008 78 1 012356
[8]
Daley AJ, Kollath C, Schollwöck U, and Vidal G Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces J. Stat. Mech. Theory Exp. 2004 2004 04 P04005
[9]
Dolfi M, Bauer B, Troyer M, and Ristivojevic Z Multigrid algorithms for tensor network states Phys. Rev. Lett. 2012 109 2 020604
[10]
Dolgov, S., Kalise, D., Kunisch, K.: Tensor decompositions for high-dimensional Hamilton-Jacobi-Bellman equations, 24
[11]
Dolgov S and Khoromskij B Two-level QTT-Tucker format for optimized tensor calculus SIAM J. Matrix Anal. Appl. 2013 34 2 593-623
[12]
Eigel M, Pfeffer M, and Schneider R Adaptive stochastic Galerkin FEM with hierarchical tensor representations Numer. Math. 2017 136 3 765-803
[13]
Fishman, M., White, S.R., Stoudenmire, E.M.: The ITensor software library for tensor network calculations, arXiv:2007.14822, (2020)
[14]
Grasedyck L Hierarchical singular value decomposition of tensors SIAM J. Matrix Anal. Appl. 2010 31 4 2029-2054
[15]
Hackbusch, W.: On the representation of symmetric and antisymmetric tensors, Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, Springer, pp. 483–515 (2018)
[16]
Hackbusch W and Kühn S A new scheme for the tensor representation J. Fourier Anal. Appl. 2009 15 5 706-722
[17]
Hauschild, J., Pollmann, F.: Efficient numerical simulations with tensor networks: Tensor network python (tenpy), SciPost Physics Lecture Notes (2018)
[18]
Helgaker, T., Jorgensen, P.: and Jeppe Olsen. John Wiley & Sons, Molecular electronic-structure theory (2000)
[19]
Holtz S, Rohwedder T, and Schneider R The alternating linear scheme for tensor optimization in the tensor train format SIAM J. Sci. Comput. 2012 34 2 A683-A713
[20]
Holtz S, Rohwedder T, and Schneider R On manifolds of tensors of fixed TT-rank Numer. Math. 2012 120 4 701-731
[21]
Kazeev V, Reichmann O, and Schwab C Low-rank tensor structure of linear diffusion operators in the TT and QTT formats Linear Algebra Appl. 2013 438 11 4204-4221
[22]
Kazeev VA and Khoromskij BN Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse SIAM J. Matrix Anal. Appl. 2012 33 3 742-758
[23]
Keller, S., Dolfi, M., Troyer, M., Reiher, M.: An efficient matrix product operator representation of the quantum chemical hamiltonian. J. Chem. Phys. 143(24),(2015)
[24]
Kressner D, Steinlechner M, and Vandereycken B Low-rank tensor completion by Riemannian optimization BIT Numer. Math. 2014 54 2 447-468
[25]
Kressner D and Tobler C Preconditioned low-rank methods for high-dimensional elliptic pde eigenvalue problems Comput. Methods Appl. Math. 2011 11 3 363-381
[26]
McCulloch IP From density-matrix renormalization group to matrix product states J. Stat. Mech. Theory Exp. 2007 2007 10 P10014
[27]
Mendl CB Pytenet: A concise python implementation of quantum tensor network algorithms J. Open Sour. Softw. 2018 3 30 948
[28]
Ivan V Oseledets, Tensor Train decomposition SIAM J. Sci. Comput. 2011 33 5 2295-2317
[29]
Oster, M., Sallandt, L., Schneider, R.: Approximating the stationary Hamilton-Jacobi-Bellman equation by hierarchical tensor products, arXiv:1911.00279, (2020)
[30]
Östlund S and Rommer S Thermodynamic limit of density matrix renormalization Phys. Rev. Lett. 1995 75 19 3537
[31]
Roberts, C., Milsted, A., Ganahl, M., Zalcman, A., Fontaine, B., Zou, Y., Hidary, J., Vidal, G., Leichenauer, S.: Tensornetwork: A library for physics and machine learning, arXiv:1905.01330, (2019)
[32]
Rohwedder T, Schneider R, and Zeiser A Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization Adv. Comput. Math. 2011 34 1 43-66
[33]
Schollwöck U The density-matrix renormalization group in the age of matrix product states Ann. Phys. 2011 326 1 96-192
[34]
Singh S, Pfeifer RNC, and Vidal G Tensor network states and algorithms in the presence of a global U(1) symmetry Phys. Rev. B. 2011 83 115125
[35]
Steinlechner M Riemannian optimization for high-dimensional tensor completion SIAM J. Sci. Comput. 2016 38 5 S461-S484
[36]
Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, and Legeza Ö Tensor product methods and entanglement optimization for ab initio quantum chemistry Int. J. Quantum Chem. 2015 115 19 1342-1391
[37]
Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv: cond-mat/0407066, (2004)
[38]
Vidal G Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett. 2003 91 14 147902
[39]
Vidal G Entanglement renormalization Phys. Rev. Lett. 2007 99
[40]
Steven R White, Density matrix formulation for quantum renormalization groups Phys. Rev. Lett. 1992 69 2863-2866

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Calcolo: a quarterly on numerical analysis and theory of computation
Calcolo: a quarterly on numerical analysis and theory of computation  Volume 59, Issue 2
Jun 2022
278 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 June 2022
Accepted: 25 February 2022
Revision received: 16 December 2021
Received: 08 May 2021

Author Tags

  1. Second quantization
  2. Particle number conservation
  3. Matrix product states
  4. Matrix product operators

Author Tags

  1. 15A69
  2. 65F15
  3. 65Y20
  4. 65Z05

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media