Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A virtual reality flight simulator for human factors engineering

Published: 01 September 2017 Publication History

Abstract

This research presents a virtual reality flight simulator (VRFS) that combines the advantages of desktop simulations and hardware mock-ups, i.e., the flexibility of a desktop flight simulation with the level of immersion close to a full flight simulator. In contrast to similar existing virtual reality flight simulators, the presented system focuses on human factors (HF) engineering and is used for evaluating flight decks in an early phase of the design process. Hence, HF tools that are based on HF methods have been integrated; applying these methods requires collecting objective (e.g., eye tracking, physiological data, head and finger movements) as well as subjective data (e.g., questionnaires). In this paper, three user studies are presented that demonstrate the application of the integrated HF methods and the general usability of the system. These studies have been conducted as part of human---machine interface (HMI) development projects and range from basic cognitive research to HMI evaluations using realistic scenarios. The user studies indicate that HF engineering with the help of this system is possible and a feasible alternative to other means of evaluation. Yet, the abilities are limited due to technological and physiological constraints. This is why the scope of the VRFS lies between desktop simulations and a full hardware mock-up and cannot replace either of those. However, the presented studies show that the system can provide reliable information on the interaction with HMI. Thus, it is a reliable low-cost addition in the early development process of cockpit human machine interaction technologies when it comes to HF evaluations.

References

[1]
Aslandere T, Dreyer D, Pantkratz F, Schubotz R (2014) A generic virtual reality flight simulator. Virtuelle und Erweiterte Realität, 11. Workshop der GI-Fachgruppe VR/AR. Shaker Verlag, Aachen, pp 1-13.
[2]
Aslandere T, Dreyer D, Pankratz F (2015) Virtual hand-button interaction in a generic virtual reality flight simulator. In: 2015 IEEE aerospace conference, pp 1-8.
[3]
Bandow D (2006) Head-Up-guidance-systeme und mensch-maschine-interaktion. Bericht aus dem Institut für Arbeitswissenschaft der TU Darmstadt. Ergonomia, Stuttgart.
[4]
Bauer M (2014) The enhanced virtual environment (Eve): learning lessons to improve safety. http://www.highflyer.airbus-group.com/02_2014_tackling_the_cyber_threat.html#article_08_05. Accessed 12 Sept 2014.
[5]
Bauer M, Klingauf U (2008) Virtual-reality as a future training medium for civilian flight procedure training. In: AIAA (ed) AIAA modeling and simulation technologies conference and exhibit. American Institute of Aeronautics and Astronautics, Reston.
[6]
Bokranz R, Landau K (1991) Einführung in die Arbeitswissenschaft: Analyse und Gestaltung von Arbeitssystemen. Uni-Taschenbü-cher. E. Ulmer, Stuttgart.
[7]
Crick C, Jay G, Osentoski S, Pitzer B, Jenkins OC (2011) Rosbridge: ROS for non-ROS users. In: Proceedings of the 15th international symposium on robotics research, Flagstaff.
[8]
Deaton JE, Morrison JG (2009) A framework for the effective practice of human factors, or ''what your mentor never told you about a career in human factors...". In: Wise JA, Hopkin VD, Garland DJ (eds) Handbook of aviation human factors, 2nd edn. CRC Press, London, pp 15-31.
[9]
Dörr K (2004) Aufbau und Evaluation eines immersiven computer-basierten Trainingssystems in der Pilotenausbildung. Bericht aus dem Fachgebiet Flugsysteme und Regelungstechnik der TU Darmstadt. Ergonomia-Verl, Stuttgart.
[10]
Dörr K, Schiefele J, Kubbat W (2001) Virtual cockpit simulation for pilot training. In: North Atlantic Treaty Organization (ed) What is essential for virtual reality systems to meet military human performance goals? RTO human factors and medicine panel (HFM) workshop. RTO, Research and Technology Organization, Neuilly-sur-Seine, pp 11-1-11-7.
[11]
Dreyer D, Hillebrand A (2010) Steigerung der Durchführungsobjektivität bei Probandenbefragungen in virtual reality. In: Grandt M, Bauch S (ed) Innovative Interaktionstechnologien für Mensch-Maschine-Schnittstellen, Bonn, pp 205-214.
[12]
Dreyer D, Oberhauser M (2016) Beyond the Push-Button: A study on system management operations in the flight deck. In: Proceedings of the International Conference on Human Computer Interaction in Aerospace 16, Paris, France. (In press).
[13]
Dreyer D, Oberhauser M, Bandow D (2014) HUD symbology evaluation in a virtual reality flight simulation. In: Proceedings of the international conference on human-computer interaction in aerospace. ACM, pp 9-14.
[14]
Goutal L (2000) Ergonomics assessment for aircraft cockpit using the virtual mock-up. In: Landau K (ed) Ergonomic software tools in product and workplace design: a review of recent developments in human modeling and other design aids. Verlag Ergon, Stuttgart, pp 173-183.
[15]
Hart SG (2006) NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the human factors and ergonomics society 50th annual meeting, vol 9. HFES, Santa Monica.
[16]
Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52:139-183.
[17]
Helmreich RL, Merritt AC, Wilhelm JA (1999) The evolution of crew resource management training in commercial aviation. Int J Aviat Psychol 9(1):19-32.
[18]
Hillebrand A (2012) Methoden zur Evaluierung des user-interfaces großer displays. In: Grandt M, Schmerwitz S (ed) Fortschrittliche Anzeigesysteme für die Fahrzeug- und Prozessführung, Bonn, pp 273-282.
[19]
Hillebrand A (2013) ATTENDO: method for the assessment of visual attention allocation in two-dimensional spaces. Proc Hum Factors Ergon Soc Annu Meet 57(1):2047-2051.
[20]
Hillebrand A, Wahrenberg E, Manzey D (2012) A new method to assess pilots' allocation of visual attention using a head-up display. In: De Waard D (ed) Proceedings HFES Europe chapter conference, Toulouse.
[21]
Hunt AR, Kingstone A (2003) Covert and overt voluntary attention: linked or independent? Cogn Brain Res 18(1):102-105.
[22]
Hüsgen S, Klingauf U (2005) Interaktionsmechanismen zur Verbesserung der Mensch-Maschine-Schnittstelle am Beispiel eines virtuellen Flugsimulators. In: Deutscher Luft- u. Raumfahrtkongress.
[23]
Jorna PG, Hoogeboom PJ (2004) Evaluating the flight deck. In: Harris D (ed) Human factors for civil flight deck design. Ashgate, pp 235-275.
[24]
Just MA, Carpenter PA (1980) A theory of reading: from eye fixations to comprehension. Psychol Rev 87(4):329-354.
[25]
Kelly BD (2004) Flight deck design and integration for commercial air transports. In: Harris D (ed) Human factors for civil flight deck design. Ashgate, pp 3-33.
[26]
Kolasinski EM (1995) Simulator sickness in virtual environments: Technical Report 1027, United States Army Research Institute for the Behavioral and Social Sciences.
[27]
Liesecke S (2013) Eye-tracking in virtual reality. Master's thesis, Universität der Bundeswehr.
[28]
Malcolm R (1984) The Malcolm horizon: history and future. NASA. Dryden Flight Research Center Peripheral Vision Horizon Display (PVHD) pp 11-40 (SEE N 85-10044 01-06).
[29]
Meister D, Gawron V (2009) Measurement in aviation systems. In: Wise JA, Hopkin VD, Garland DJ (eds) Handbook of aviation human factors, 2nd edn. CRC Press, London.
[30]
Michalczik F, Thüring M, Hillebrand A (2013) Domain independent visual attention assessment in stereoscopic displays. In: De Waard D, Brookhuis K, Wiczorek R, Di Nocera F, Barham P, Weikert C, Kluge A, Gerbino W, Toffetti A (ed) Proceedings of the human factors and ergonomics society Europe chapter.
[31]
Oberhauser M, Dreyer D, Mamessier S, Convard T, Bandow D, Hillebrand A (2015) Bridging the gap between desktop research and full flight simulators for human factors research. In: Harris D (ed) Engineering psychology and cognitive ergonomics, vol 9174. Springer, Berlin, pp 460-471.
[32]
Oberhauser M, Dreyer D, Convard T (2016) Rapid integration and evaluation of functional HMI components in a virtual reality aircraft: accepted paper. In: 7th international conference on applied human factors and ergonomics (AHFE) 2016.
[33]
Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3-25.
[34]
Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol 3, issue 2, p 5.
[35]
Reuzeau F, Nibbelke R (2004) Flight deck design process. In: Harris D (ed) Human factors for civil flight deck design. Ashgate, Farnham, pp 33-55.
[36]
Selcon SJ, Taylor RM (1990) Evaluation of the situational awareness rating technique (SART) as a tool for aircrew systems design. In: Situational awareness in aerospace operations (AGARD-CP- 478). NATO-AGARD, Neuilly Sur Seine.
[37]
Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston.
[38]
Southard DA (1993) Transformations for stereoscopic visual simulation. Comput Graph 16(4):401-410.
[39]
Wickens CD (2002) Situation awareness and workload in aviation. Curr Dir Psychol Sci 11(4):128-133.
[40]
Wickens CD, Ververs PM, Fadden S (2004) Head-up displays. In: Harris D (ed) Human factors for civil flight deck design. Ashgate, Farnham, pp 69-103.
[41]
Wise MA, Abbott DW, Wise JA, Wise SA (2009) Underpinnings of system evaluation. In: Wise JA, Hopkin VD, Garland DJ (eds) Handbook of aviation human factors, 2nd edn. CRC Press, London, pp 4-1-4-15.
[42]
Yavrucuk I, Kubali E, Tarimci O, Yilmaz D (2009) A low cost flight simulator using virtual reality tools. In: American Institute of Aeronautics and Astronautics (ed) AIAA modeling and simulation technologies conference. American Institute of Aeronautics and Astronautics, Reston.

Cited By

View all
  • (2024)Enhancing Walk-Light Detector Usage for the Visually Impaired: A Comparison of VR Exploration and Verbal InstructionsProceedings of the 21st International Web for All Conference10.1145/3677846.3677849(139-149)Online publication date: 13-May-2024
  • (2024)3D Flight Planning Using Extended RealityProceedings of the 2024 ACM Symposium on Spatial User Interaction10.1145/3677386.3682088(1-10)Online publication date: 7-Oct-2024
  • (2024)Exploring the Influence of Avatar Skin Tone in VR Educational GamesCompanion Proceedings of the 2024 Annual Symposium on Computer-Human Interaction in Play10.1145/3665463.3678799(227-234)Online publication date: 14-Oct-2024
  • Show More Cited By
  1. A virtual reality flight simulator for human factors engineering

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Cognition, Technology and Work
      Cognition, Technology and Work  Volume 19, Issue 2-3
      September 2017
      322 pages
      ISSN:1435-5558
      EISSN:1435-5566
      Issue’s Table of Contents

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 September 2017

      Author Tags

      1. Flight deck design
      2. Human factors engineering
      3. Virtual reality
      4. Virtual reality flight simulation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 08 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Enhancing Walk-Light Detector Usage for the Visually Impaired: A Comparison of VR Exploration and Verbal InstructionsProceedings of the 21st International Web for All Conference10.1145/3677846.3677849(139-149)Online publication date: 13-May-2024
      • (2024)3D Flight Planning Using Extended RealityProceedings of the 2024 ACM Symposium on Spatial User Interaction10.1145/3677386.3682088(1-10)Online publication date: 7-Oct-2024
      • (2024)Exploring the Influence of Avatar Skin Tone in VR Educational GamesCompanion Proceedings of the 2024 Annual Symposium on Computer-Human Interaction in Play10.1145/3665463.3678799(227-234)Online publication date: 14-Oct-2024
      • (2024)Low-Latency Ocular Parallax Rendering and Investigation of Its Effect on Depth Perception in Virtual RealityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.337207830:5(2228-2238)Online publication date: 5-Mar-2024
      • (2023)Aircraft Cockpit Interaction in Virtual Reality with Visual, Auditive, and Vibrotactile FeedbackProceedings of the ACM on Human-Computer Interaction10.1145/36264817:ISS(420-443)Online publication date: 1-Nov-2023
      • (2023)A Pedagogical Virtual Reality Environment for Children in Early Childhood EducationProceedings of the 25th Symposium on Virtual and Augmented Reality10.1145/3625008.3625047(204-209)Online publication date: 6-Nov-2023
      • (2023)LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of ThingsProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581396(1-17)Online publication date: 19-Apr-2023
      • (2023)Using Extended Reality in Flight Simulators: A Literature ReviewIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.317392129:9(3961-3975)Online publication date: 1-Sep-2023
      • (2023)Participants matterAdvanced Engineering Informatics10.1016/j.aei.2022.10183755:COnline publication date: 1-Jan-2023
      • (2023)Design and evaluation of an adaptive virtual reality training systemVirtual Reality10.1007/s10055-023-00827-727:3(2509-2528)Online publication date: 3-Jul-2023
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media