Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Review of brain MRI image segmentation methods

Published: 01 March 2010 Publication History

Abstract

Brain image segmentation is one of the most important parts of clinical diagnostic tools. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. However, the process of accurate segmentation of these images is very important and crucial for a correct diagnosis by clinical tools. We presented a review of the methods used in brain segmentation. The review covers imaging modalities, magnetic resonance imaging and methods for noise reduction, inhomogeneity correction and segmentation. We conclude with a discussion on the trend of future research in brain segmentation.

References

[1]
Acton ST, Mukherjee DP (2000) Scale space classification using area morphology. IEEE Trans Image Process 9(4):623-635.
[2]
Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118: 269-277.
[3]
An S, An D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721-741.
[4]
Andersen AH et al (2002) Automated segmentation of multispectral brain MR images. J Neurosci Methods 122(1):13-23.
[5]
Ardizzone E, Pirrone R, Gambino O (2005) Exponential entropy driven HUM on knee MR images. In: 27th annual international conference of the engineering in medicine and biology society, pp 1769-1772.
[6]
Balafar MA (2008) Medical image segmentation using fuzzy C-mean (FCM) and dominant grey levels of image. In: Visual information engineering conference, pp 314-317.
[7]
Balafar M et al (2008a) Medical image segmentation using fuzzy C-mean (FCM), Bayesian method and user interaction. In: International conference on wavelet analysis and pattern recognition, pp 68-73.
[8]
Balafar MA et al (2008b) New multi-scale medical image segmentation based on fuzzy c-mean (FCM). In: IEEE conference on innovative technologies in intelligent systems and industrial applications, pp 66-70.
[9]
Balafar MA et al (2008c) Medical image segmentation using anisotropic filter, user interaction and fuzzy C-mean (FCM). In: Advanced intelligent computing theories and applications with aspects of contemporary intelligent computing techniques: 4th international conference on intelligent computing, Springer, pp 169-176.
[10]
Balafar MA et al (2008d) Medical image segmentation using fuzzy C-mean (FCM), learning vector quantization (LVQ) and user interaction. In: Advanced intelligent computing theories and applications with aspects of contemporary intelligent computing techniques: 4th international conference on intelligent computing, Springer, pp 177-184.
[11]
Balafar MA et al (2008e) MRI segmentation of medical images using FCM with initialized class centers via genetic algorithm. In: International symposium on information technology, pp 1-4.
[12]
Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, pp 60-65.
[13]
Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61-79.
[14]
Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266-277.
[15]
Chang PL, TengWG(2007) Exploiting the self-organizingmap formedical image segmentation. In: Twentieth IEEE international symposium on computer-based medical systems, pp 281-288.
[16]
Clark MC et al (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2):187-201.
[17]
Dave RN (1991) Characterization and detection of noise in clustering. Pattern Recogn Lett 12(11):657-664.
[18]
Diplaros A, Vlassis N, Gevers T (2007) A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans Neural Netw 18(3):798-808.
[19]
Dokur Z (2008) A unified framework for image compression and segmentation by using an incremental neural network. Expert Syst Appl 34(1):611-619.
[20]
Edelstein WA et al (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4): 604-618.
[21]
Gallea R et al (2008) Noise filtering using edge-driven adaptive anisotropic diffusion. In: 21st IEEE international symposium on computer-based medical systems, pp 29-34.
[22]
Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek J (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3:672-682.
[23]
Han X, Fischl B (2007) Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging 26(4):479-486.
[24]
KausMRet al (1999) Segmentation ofmeningiomas and lowgrade gliomas inMRI.Lecture Notes in Computer Science, pp 1-10.
[25]
Kim HS et al (2008) Speckle reducing anisotropic diffusion based on directions of gradient. In: Proceedings of the 2008 international conference on advanced language processing and web information technology, pp 198-203.
[26]
Li SZ (1994) Markov random field models in computer vision. Lect Notes Comput Sci 801:361-370.
[27]
Li N, Liu M, Li Y (2007) Image segmentation algorithm using watershed transform and level set method. In: IEEE international conference on acoustics, speech and signal processing, pp 613-616.
[28]
Likar B, Viergever MA, Pernus F (2001) Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 20(12):1398-1410.
[29]
Lions PL, Morel JM, Coll T (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29(1):182-193.
[30]
Liu S, Li J (2006) Automatic medical image segmentation using gradient and intensity combined level set method. In: The 28th IEEE EMBS annual international conference, pp 3118-3121.
[31]
Mäkelä T et al (2002) A review of cardiac image registrationmethods. IEEE TransMed Imaging 21(9):1011- 1021.
[32]
Matsuzawa J et al (2001) Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cereb Cortex 11(4):335.
[33]
Nowak RD (1999) Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process 8(10):1408-1419.
[34]
Paragios N, DericheR(1999) Coupled geodesic active regions for image segmentation. RapportDeRecherche-Institut National De Recherche En Informatique Et En Automatique.
[35]
Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629-639.
[36]
Pohle R, Toennies KD (2001) Segmentation ofmedical images using adaptive region growing. In: Proceedings of SPIE medical imaging, pp 1337-1346.
[37]
Ren J, He M (2007) A level set method for image segmentation by integrating channel anisotropic diffusion information. In: 2nd IEEE conference on industrial electronics and applications, pp 2554-2557.
[38]
Robb RA (2000) Biomedical imaging, visualization, and analysis, edited by Wiley-Liss, USA.
[39]
Rohlfing T et al (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4):1428-1442.
[40]
Rousson M, Brox T, Deriche R (2003) Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE computer society conference on computer vision and pattern recognition, pp 699-704.
[41]
Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591-1595.
[42]
Sijbers J et al (1998) Estimation of the noise in magnitude MR images. Magn Reson Imaging 16(1):87-90.
[43]
Smolka B (2008) Modified biased anisotropic diffusion processing of noisy color images. In: 9th international conference on signal processing, pp 777-780.
[44]
Song T et al (2007) A modified probabilistic neural network for partial volume segmentation in brain MR image. IEEE Trans Neural Netw 18(5):1424-1432.
[45]
Suzuki H, Toriwaki J (1991) Automatic segmentation of head MRI images by knowledge guided thresholding. Comput Med Imaging Graph 15(4):233.
[46]
Tian D, Fan L (2007) A brain MR images segmentation method based on SOM neural network. In: The 1st international conference on bioinformatics and biomedical engineering, pp 686-689.
[47]
Tisdall D, Atkins MS (2005) MRI denoising via phase error estimation. In: Proceedings of SPIE pp 646-654.
[48]
ToliasYA, PanasSM (1998) On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. IEEE Signal Process Lett 5(10):245-247.
[49]
Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583-598.
[50]
Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405.
[51]
Wang J (2007) Discriminative Gaussian mixtures for interactive image segmentation. In: IEEE international conference on acoustics, speech and signal processing, pp 386-396.
[52]
Warfield SK et al (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43-55.
[53]
Yoon SW et al (2004) Medical endoscopic image segmentation using snakes. IEICE Trans Inf Syst 87(3): 785-789.
[54]
You YL et al (1996) Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans Image Process 5(11):1539-1553.
[55]
Zhang DQ, Chen SC (2004) A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif Intell Med 32(1):37-50.
[56]
Zhang Y et al (2007) A novel medical image segmentation method using dynamic programming. In: International conference on medical information visualisation-bioMedical visualisation, pp 69-74.
[57]
Zhao HK et al (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179-195.

Cited By

View all
  • (2024)A novel unsupervised segmentation approach for brain computed tomography employing hyperparameter optimizationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3638530.3664126(2091-2094)Online publication date: 14-Jul-2024
  • (2024)Hybrid similarity measure-based image indexing and Gradient Ladybug Beetle optimization for retrieval of brain tumor using MRIThe Journal of Supercomputing10.1007/s11227-024-06350-z80:16(24051-24078)Online publication date: 1-Nov-2024
  • (2023)Segmenting MR Images Through Texture Extraction and Multiplicative Components OptimizationScale Space and Variational Methods in Computer Vision10.1007/978-3-031-31975-4_39(511-521)Online publication date: 21-May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Artificial Intelligence Review
Artificial Intelligence Review  Volume 33, Issue 3
March 2010
98 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 March 2010

Author Tags

  1. Brain
  2. MRI
  3. Segmentation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A novel unsupervised segmentation approach for brain computed tomography employing hyperparameter optimizationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3638530.3664126(2091-2094)Online publication date: 14-Jul-2024
  • (2024)Hybrid similarity measure-based image indexing and Gradient Ladybug Beetle optimization for retrieval of brain tumor using MRIThe Journal of Supercomputing10.1007/s11227-024-06350-z80:16(24051-24078)Online publication date: 1-Nov-2024
  • (2023)Segmenting MR Images Through Texture Extraction and Multiplicative Components OptimizationScale Space and Variational Methods in Computer Vision10.1007/978-3-031-31975-4_39(511-521)Online publication date: 21-May-2023
  • (2022)MR brain tissue classification based on the spatial information enhanced Gaussian mixture modelTechnology and Health Care10.3233/THC-22800830:S1(81-89)Online publication date: 1-Jan-2022
  • (2022)Accurate brain extraction on MRI using U-Net trained in two stagesProceedings of the 14th International Conference on Bioinformatics and Biomedical Technology10.1145/3543377.3543381(20-26)Online publication date: 27-May-2022
  • (2022)Study and analysis of different segmentation methods for brain tumor MRI applicationMultimedia Tools and Applications10.1007/s11042-022-13636-y82:5(7117-7139)Online publication date: 16-Aug-2022
  • (2022)Denoising of brain magnetic resonance images using a MDB networkMultimedia Tools and Applications10.1007/s11042-021-11521-881:29(41751-41763)Online publication date: 1-Dec-2022
  • (2022)A noise robust kernel fuzzy clustering based on picture fuzzy sets and KL divergence measure for MRI image segmentationApplied Intelligence10.1007/s10489-022-04315-453:13(16487-16518)Online publication date: 8-Dec-2022
  • (2022)Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a reviewArtificial Intelligence Review10.1007/s10462-022-10245-x56:4(2923-2969)Online publication date: 16-Aug-2022
  • (2022)Kernel picture fuzzy clustering with spatial neighborhood information for MRI image segmentationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07269-426:22(12717-12740)Online publication date: 1-Nov-2022
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media