Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Inverter-based low-noise, 150 µW single-ended to differential SC-VGAs for second harmonic cardiac ultrasound imaging probes

Published: 01 August 2015 Publication History

Abstract

This paper presents two inverter-based low-noise, low-power, single-ended to differential switched-capacitor variable gain amplifiers (SC-VGAs) for 2---6-MHz second harmonic cardiac ultrasound imaging probes fabricated with 0.18 µm complementary metal---oxide---semiconductor technology. By employing inverters in class C mode instead of operational trans-conductance amplifiers, the power consumption of 150 µW at a supply voltage of 1 V is achieved for both VGAs; 75 and 72 dBm of integrated noise with 2---6-MHz bandwidth at maximum gain and a sampling frequency of 30 MHz are achieved for VGA1 and VGA2, respectively. Both VGAs have two stages. VGA1 uses a fully switched-capacitor approach for gain control, and the gain range is 21---21 dB with 12-bit capacitor arrays. VGA2 adopts an inverter-based SC-VGA in the first stage with a 6-bit capacitor array to tune the gain from 9 to 9 dB, and the second stage is a differential amplifier with a 4-bit thermometer-coded resistor array to tune the gain from 0 to 13 dB. Both SC-VGAs complete the single-ended to differential conversion in the second stage to suppress the second harmonic distortion (HD2). Both VGAs have HD2 less than 50 dB. The die size of VGA1 is 245 µm 134 µm, and the die size of VGA2 is 109 µm 164 µm.

References

[1]
Harrer, J. U., Mayfrank, L., Mull, M., & Klötzsch, C. (2003). Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion. Journal of Neurology Neurosurgery and Psychiatry,74(3), 333---338.
[2]
van Neer, P. L., Danilouchkine, M. G., Verweij, M. D., Demi, L., Voormolen, M. M., van der Steen, A. F., & de Jong, N. (2011). Comparison of fundamental, second harmonic, and super harmonic imaging: a simulation study. Journal of Acoustical Society of America,130(5), 3148---3157.
[3]
Brunner, E. (2002). How ultrasound system considerations influence front-end component choice. Analog Dialogue,6(3), 1---4.
[4]
Liu, C., Yan, Y. P., Goh, W. L., Xiong, Y. Z., Zhang, L. J., & Madihian, M. (2012). A 5-Gb/s automatic gain control amplifier with temperature compensation. IEEE Journal of Solid State Circuits.,47(6), 1323---1333.
[5]
Fu, C. T., & Luong H. (2007). A CMOS linear-in-dB high-linearity variable gain amplifier for UWB receivers. In IEEE Asian solid-state circuits conference, ASSCC'07, pp. 103---106.
[6]
Motamed, A., Hwang, C., & Ismail, M. (1998). A low-voltage low-power wide range CMOS variable gain amplifier. IEEE Transactions on circuits and systems--II: Analog and Digital Signal Processing,45(7), 800---811.
[7]
Duong, Q. H., Quan, L., & Lee, S. G. (2005). An all CMOS 84 dB-linear low-power variable gain amplifier. In IEEE symposium on VLSI Circuits, pp. 114---117.
[8]
Yamaji, T., Kanou, N., & Itakura, T. (2002). A temperature-stable CMOS variable gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid State Circuits,37(5), 553---558.
[9]
Choi, I., Seo, H., & Kim, B. (2013). Accurate dB-linear variable gain amplifier with gain error compensation. IEEE Journal of Solid State Circuits,48(2), 456---464.
[10]
Elwan, H., Tekin, A., & Pedrotti, K. (2009). A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS. IEEE Journal of Solid State Circuits,44(9), 2503---2514.
[11]
Fujimoto, Y., Tani, H., Maruyama, M., Akada, H., Ogawa, H., & Miyamoto, M. (2004). A low-power switched-capacitor variable gain amplifier. IEEE Journal of Solid State Circuits,39(7), 1213---1216.
[12]
Rieger, R. (2011). Variable-gain, low-noise amplification for sampling front ends. IEEE Transactions on Biomedical Circuits and Systems,5(3), 253---261.
[13]
Ronchi D. & Terenzi M. (2012). 4D data ultrasound imaging system and corresponding control process, PCT/EP2011/006556.
[14]
Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of solid state circuits,44(2), 458---472.
[15]
Wang, P., HalvorsrØd, T., & Ytterdal, T. (2013). A 12b-control ultra-low-power low-noise SCVGA for medical ultrasound probes. IET The Journal of Engineering (JOE).
[16]
Wang, P., HalvorsrØd, T., & Ytterdal, T. (2013). A low-power, low-noise, and low-cost VGA for second harmonic imaging ultrasound probes. In: IEEE Conference on biomedical circuits and systems, BioCAS'13, pp. 314---317.
[17]
Fujimoto, Y., Akada, H., Ogawa, H., Iizuka, K., & Miyamoto, M. (2002). A switched-capacitor variable gain amplifier for CCD image sensor interface system. In IEEE European solid state circuits conference, ESSCIRC'02, 2002, pp. 363---366.
[18]
Wang, P., HalvorsrØd, T., & Ytterdal T. (2013). A low noise single-end to differential switched-capacitor VGA for PZT Xducer ultrasound imaging. In IEEE 2013 European conference on circuit theory and design, ECCTD 2013, pp. 1---4
[19]
Wang, P., HalvorsrØd, T., & Ytterdal, T. (2014). 0.5 V inverter-based ultra-low-power, low-noise VGA for medical ultrasound probes. IET Electronics Letters,50(2), 69---71.
[20]
Nakamura, K., Decker, S., Kelly, D., Das, D., St. Onge, L., Mehr, L., Walsh, M., Swanson, E., Picano, P., Mangelsdorf, C., Yamaguchi, H., Nishio, K., & Senda, T. (2000). A CMOS analog front-end chip-set for mega pixel camcorders. In: IEEE international solid-state circuits conference, (ISSCC'00), San Francisco, pp. 190---191.
[21]
Jarjani, R. (1995). A low-power CMOS VGA for 50 Mb/s disk drive read channels. IEEE Transactions on Circuits And Systems-II: Analog and Digital Signal Processing,42(6), 370---376.
[22]
Schreier, R., Silva, J., Steensgaard, J., & Temes, G. C. (2005). Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Transactions on Circuits And Systems-I: Regular Papers,52(11), 2358---2368.
[23]
Murmann, B. (2012). Thermal noise in track-and-hold circuits: analysis and simulation techniques. IEEE Solid State Circuits Magazine,4(2), 46---54.
[24]
Tedja, S., Van der Spiegel, J., & Williams, H. H. (1994). Analytical and experimental studies of thermal noise in MOSFETs. IEEE Transactions on Electron Devices,41(11), 2069---2075.
[25]
Lujan, C. I., Torralba, A., Carvajal, R. G., & Ramirez-Angulo, J. (2011). Highly linear voltage follower based on local feedback and cascode transistor with dynamic biasing. IETElectronics Letters,47(4), 244---246.
  1. Inverter-based low-noise, 150 µW single-ended to differential SC-VGAs for second harmonic cardiac ultrasound imaging probes

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Analog Integrated Circuits and Signal Processing
      Analog Integrated Circuits and Signal Processing  Volume 84, Issue 2
      August 2015
      185 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 August 2015

      Author Tags

      1. Inverter-based
      2. Low noise
      3. Low power
      4. SC-VGA
      5. Second harmonic distortion
      6. Ultrasound probes

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Feb 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media