Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Population size reduction for the differential evolution algorithm

Published: 01 December 2008 Publication History

Abstract

This paper studies the efficiency of a recently defined population-based direct global optimization method called Differential Evolution with self-adaptive control parameters. The original version uses fixed population size but a method for gradually reducing population size is proposed in this paper. It improves the efficiency and robustness of the algorithm and can be applied to any variant of a Differential Evolution algorithm. The proposed modification is tested on commonly used benchmark problems for unconstrained optimization and compared with other optimization methods such as Evolutionary Algorithms and Evolution Strategies.

References

[1]
Ali MM, Törn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703-1725.
[2]
Bäck T (2002) Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Inf Sci 148:113-121.
[3]
Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Institute of Physics Publishing and Oxford University Press, Oxford.
[4]
Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York.
[5]
Brest J, Bo¿kovic B, Greiner S, ¿umer V, Sepesy Mau¿ec M (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput--Fusion Found Methodol Appl 11(7):617-629. 0124-0.
[6]
Brest J, Greiner S, Bo¿kovic B, Mernik M, ¿umer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646-657.
[7]
Brest J, ¿umer V, Sepesy Mau¿ec M (2006) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: The 2006 IEEE congress on evolutionary computation CEC2006. IEEE Press, pp 919-926.
[8]
Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Natural computing. Springer, Berlin.
[9]
Eiben AE, Marchiori E, Valko VA (2004) Evolutionary algorithms with on-the-fly population size adjustment. In: Proceedings of the 8th international conference on parallel problem solving from nature. Lecture Notes in Computer Science, vol 3242. Springer, New York, pp 41-50.
[10]
Fan H-Y, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Global Optim 27(1):105-129.
[11]
Feoktistov V (2006) Differential evolution: in search of solutions. Springer, New York.
[12]
Fernandes C, Rosa A (2006) Self-regulated population size in evolutionary algorithms. In: Proceedings of the 9th international conference on parallel problem solving from nature. Lecture notes in computer science, vol 4193. Springer, New York.
[13]
Goldberg DE, Deb K, Clark JH (1992) Genetic algorithms, noise, and the sizing of populations. Complex Syst 6:333-362.
[14]
Jansen T, De Jong KA, Wegener I (2005) On the choice of the offspring population size in evolutionary algorithms. Evol Comput 13(4):413-440.
[15]
Jiao Y-C, Dang C, Leung Y, Hao Y (2006) A modification to the new version of the price's algorithm for continuous global optimization problems. J Global Optim 36(4):609-626.
[16]
Lee CY, Yao X (2004) Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans Evol Comput 8(1):1-13.
[17]
Liang K-H, Yao X, Newton CS (2001) Adapting self-adaptive parameters in evolutionary algorithms. Appl Intell 15(3):171-180.
[18]
Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput--Fusion Found Methodol Appl 9(6):448- 462.
[19]
Lobo FG, Lima CF (2005) A review of adaptive population sizing schemes in genetic algorithms. In: Proceedings of the 2005 workshops on genetic and evolutionary computation, genetic and evolutionary computation conference. ACM Press, pp 228-234.
[20]
Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A comparative study of differential evolution variants for global optimization. In: GECCO, pp 485-492.
[21]
Ohkura K, Matsumura Y, Ueda K (2001) Robust evolution strategies. Appl Intell 15(3):153-169.
[22]
Price KV, Storn RM, Lampinen JA (2005) Differential evolution. A practical approach to global optimization. Springer, New York.
[23]
Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE congress on evolutionary computation CEC2005, September 2005, vol 2. IEEE Press, pp 1785-1791.
[24]
Rönkkönen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: The 2005 IEEE congress on evolutionary computation CEC2005, September 2005, vol 1. IEEE Press, pp 506-513.
[25]
Shang Y-W, Qiu Y-H (2006) A note on the extended rosenbrock function. Evol Comput 14(1):119-126.
[26]
Storn R, Price K (1995) Differential evolution--a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report TR-95-012, Berkeley.
[27]
Storn R, Price K (1997) Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341-359.
[28]
Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput--Fusion Found Methodol Appl 10(8):673-686.
[29]
Tvrdík J (2006) Competitive differential evolution. In: MENDEL'06, 12th international conference on soft computing, pp 7-12.
[30]
Yao X, Liu Y, Lin G (July 1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82.

Cited By

View all
  • (2024)Automatic deep sparse clustering with a dynamic population-based evolutionary algorithm using reinforcement learning and transfer learningImage and Vision Computing10.1016/j.imavis.2024.105258151:COnline publication date: 1-Nov-2024
  • (2023)Patterns of Convergence and Bound Constraint Violation in Differential Evolution on SBOX-COST Benchmarking SuiteProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596410(2337-2345)Online publication date: 15-Jul-2023
  • (2023)Modular Differential EvolutionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590417(864-872)Online publication date: 15-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Intelligence
Applied Intelligence  Volume 29, Issue 3
December 2008
134 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 December 2008

Author Tags

  1. Control parameter
  2. Differential evolution
  3. Fitness function
  4. Global function optimization
  5. Population size
  6. Self-adaptation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Automatic deep sparse clustering with a dynamic population-based evolutionary algorithm using reinforcement learning and transfer learningImage and Vision Computing10.1016/j.imavis.2024.105258151:COnline publication date: 1-Nov-2024
  • (2023)Patterns of Convergence and Bound Constraint Violation in Differential Evolution on SBOX-COST Benchmarking SuiteProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596410(2337-2345)Online publication date: 15-Jul-2023
  • (2023)Modular Differential EvolutionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590417(864-872)Online publication date: 15-Jul-2023
  • (2023)Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction techniqueKnowledge-Based Systems10.1016/j.knosys.2023.110297264:COnline publication date: 15-Mar-2023
  • (2023)A new evolving operator selector by using fitness landscape in differential evolution algorithmInformation Sciences: an International Journal10.1016/j.ins.2022.11.071624:C(709-731)Online publication date: 1-May-2023
  • (2023)A selection hyper-heuristic algorithm with Q-learning mechanismApplied Soft Computing10.1016/j.asoc.2023.110815147:COnline publication date: 1-Nov-2023
  • (2023)Differential Evolution with wavelet basis function based parameter control and dimensional interchange for diversity enhancementApplied Soft Computing10.1016/j.asoc.2023.110492144:COnline publication date: 1-Sep-2023
  • (2022)Selective Strategy Differential Evolution for Stochastic Internal Task Scheduling Problem in Cross-Docking TerminalsComputational Intelligence and Neuroscience10.1155/2022/13984482022Online publication date: 1-Jan-2022
  • (2022)Measuring the Effects of Increasing Dimensionality on Fitness-Based Selection and Failed Exploration2022 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC55065.2022.9870409(1-8)Online publication date: 18-Jul-2022
  • (2022)Differential Evolution with an Unbounded Population2022 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC55065.2022.9870363(1-8)Online publication date: 18-Jul-2022
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media