Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Centroidal dynamics of a humanoid robot

Published: 01 October 2013 Publication History

Abstract

The center of mass (CoM) of a humanoid robot occupies a special place in its dynamics. As the location of its effective total mass, and consequently, the point of resultant action of gravity, the CoM is also the point where the robot's aggregate linear momentum and angular momentum are naturally defined. The overarching purpose of this paper is to refocus our attention to centroidal dynamics : the dynamics of a humanoid robot projected at its CoM. In this paper we specifically study the properties, structure and computation schemes for the centroidal momentum matrix (CMM), which projects the generalized velocities of a humanoid robot to its spatial centroidal momentum. Through a transformation diagram we graphically show the relationship between this matrix and the well-known joint-space inertia matrix. We also introduce the new concept of "average spatial velocity" of the humanoid that encompasses both linear and angular components and results in a novel decomposition of the kinetic energy. Further, we develop a very efficient $$O(N)$$ O ( N ) algorithm, expressed in a compact form using spatial notation, for computing the CMM, centroidal momentum, centroidal inertia, and average spatial velocity. Finally, as a practical use of centroidal dynamics we show that a momentum-based balance controller that directly employs the CMM can significantly reduce unnecessary trunk bending during balance maintenance against external disturbance.

References

[1]
Abdallah, M., Goswami, A. (2005). A biomechanically motivated two-phase strategy for biped robot upright balance control. In Proceedings of IEEE international conference on robotics and automation (ICRA) , Barcelona, pp. 3707-3713.
[2]
Bin Hammam, G., Orin, D. E., & Dariush, B. (2010). Whole-body humanoid control from upper-body task specifications. In Proceedings of IEEE international conference on robotics and automation , Anchorage, pp. 398-3405.
[3]
De Luca, A., Albu-Schaffer, A., Haddadin, S., & Hirzinger, G. (2006). Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) , Beijing, pp. 1623-1630.
[4]
Essén, H. (1993). Average angular velocity. European Journal of Physics, 14 , 201-205.
[5]
Fang, A. C., & Pollard, N. (2003). Efficient synthesis of physically valid human motion. ACM Transactions on Graphics ACM SIGGRAPH Proceedings, 22 (3), 417-426.
[6]
Featherstone, R. (2008). Rigid body dynamics algorithms . New York: Springer.
[7]
Featherstone, R., & Orin, D. E. (2000). Robot dynamics: equations and algorithms. In Proceedings of IEEE international conference on robotics and automation , San Francisco, pp. 826-834.
[8]
Featherstone, R., & Orin, D. E. (2008). Dynamics, chapter 2. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics . New York: Springer.
[9]
Goswami, A., & Kallem, V. (2004). Rate of change of angular momentum and balance maintenance of biped robots. In Proceedings of IEEE international conference on robotics and automation (ICRA) , New Orleans, pp. 3785-3790.
[10]
Herr, H., & Popovic, M. B. (2008). Angular momentum in human walking. The Journal of Experimental Biology, 211 , 467-481.
[11]
Hofmann, A., Popovic, M., & Herr, H. (2009). Exploiting angular momentum to enhance bipedal center-of-mass control. In Proceedings of IEEE international conference on robotics and automation (ICRA) , Kobe, pp. 4423-4429.
[12]
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) , Las Vegas, pp. 1644-1650.
[13]
Khatib, O. (1987). A unified approach to motion and force control of robot manipulators: The operational space formulation. IEEE Transactions on Robotics and Automation, 3 (1), 43-53.
[14]
Komura, T., Leung, H., Kudoh, S., & Kuffner, J. (2005). A feedback controller for biped humanoids that can counteract large perturbations during gait. In Proceedings of IEEE international conference on robotics and automation (ICRA) , Barcelona, pp. 2001-2007.
[15]
Lee, S.-H., & Goswami, A. (2007). Reaction mass pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots. In Proceedimgs of IEEE international conference on robotics and automation , Rome, pp. 4667-4672.
[16]
Lee, S.-H., & Goswami, A. (November 2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33 (4), 399-414.
[17]
Macchietto, A., Zordan, V., & Shelton, C. R. (2009). Momentum control for balance. ACM Transactions on Graphics, 28 (3), 80:1-80:8.
[18]
McMillan, S., & Orin, D. E. (1995). Efficient computation of articulated-body inertias using successive axial screws. IEEE Transactions on Robotics and Automation, 11 (4), 606-611.
[19]
Mistry, M., Righetti, L. (2012). Operational space control of constrained and underactuated systems. In H. Durrant-Whyte (Ed.), Robotics: Science and systems VII (pp. 225-232). Cambridge: The MIT Press.
[20]
Mitobe, K., Capi, G., & Nasu, Y. (2004). A new control method for walking robots based on angular momentum. Mechatronics, 14 , 163-174.
[21]
Morita, Y., & Ohnishi, K. (2003). Attitude control of hopping robot using angular momentum. In Proceedings of IEEE international conference on industrial technology , Vol. 1, pp. 173-178.
[22]
Nenchev, D., Umetani, Y., & Yoshida, K. (1992). Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Transactions on Robotics and Automation, 8 (1), 1-6.
[23]
Nakamura, Y., & Yamane, K. (2000). Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Transactions on Robotics and Automation, 16 (2), 124-134.
[24]
Naksuk, N., Mei, Y., & Lee, C. S. G. (2004). Humanoid trajectory generation: an iterative approach based on movement and angular momentum criteria. In Proceedings of the IEEE-RAS international conference on humanoid robots , Santa Monica, pp. 576-591.
[25]
Naksuk, N., Lee, C. S. G., & Rietdyk, S. (2005). Whole-body human to humanoid motion transfer. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) , Edmonton, pp. 104-109.
[26]
Naudet, J. (2005). Forward dynamics of multibody systems: A recursive Hamiltonian approach. PhD Thesis, Vrije Universiteit, Brussels.
[27]
Orin, D., & Goswami, A. (2008). Centroidal momentum matrix of a humanoid robot: Structure and properties. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) , Nice, pp. 653-659.
[28]
Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) , pp. 2684-2689.
[29]
Papadopoulos, E. (1990). On the dynamics and control of space manipulators. PhD Thesis, Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge.
[30]
Popovic, M.B., Hofmann, A., & Herr, H. (2004). Zero spin angular momentum control: definition and applicability. In Proceedings of the IEEE-RAS international conference on humanoid robots , Santa Monica, pp. 478-493.
[31]
Popovic, M. B., Goswami, A., & Herr, H. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. International Journal of Robotics Research, 24 (12), 1013-1032.
[32]
Roberson, R. E., & Schwertassek, R. (1988). Dynamics of multibody systems . Berlin: Springer.
[33]
Rodriguez, G., Jain, A., & Kreutz-Delgado, K. (1991). A spatial operator algebra for manipulator modelling and control. International Journal of Robotics Research, 10 (4), 371-381.
[34]
Sano, A., & Furusho, J. (1990). Realization of natural dynamic walking using the angular momentum information. In Proceedings of IEEE international conference on robotics and automation , Cincinnati, pp. 1476-1481.
[35]
Sciavicco, L., & Siciliano, B. (2005). Modeling and control of robot manipulators. Advanced textbooks in control and signal processing series . London: Springer London Limited.
[36]
Ugurlu, B., & Kawamura, A. (2010). Eulerian ZMP resolution based bipedal walking: Discussion on the intrinsic angular momentum rate change about center of mass. In Proceedings of IEEE international conference on robotics and automation , Alaska, pp. 4218-4223.
[37]
Walker, M. W., & Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms in ASME. Journal of Dynamic Systems Measurement and Control, 104 , 205-211.
[38]
Zordan, V. (2010). Angular momentum control in coordinated behaviors. Third annual international conference on motion in games . Zeist.
[39]
Wieber, P.-B. (2005). Holonomy and nonholonomy in the dynamics of articulated motion. Fast motions in biomechanics and robotics . Heidelberg: Springer.
[40]
Wieber, P.-B. (2008). Viability and predictive control for safe locomotion. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) , Nice, pp. 1103-1108.
[41]
Wensing, P. M., & Orin, D. E. (2013). Generation of dynamic humanoid behaviors through task-space control with conic optimization. In Proceedings of IEEE international conference on robotics and automation (ICRA) , Karlsruhe.

Cited By

View all
  • (2025)Cafe-Mpc: A Cascaded-Fidelity Model Predictive Control Framework With Tuning-Free Whole-Body ControlIEEE Transactions on Robotics10.1109/TRO.2024.350413241(837-856)Online publication date: 1-Jan-2025
  • (2024)Online Multicontact Receding Horizon Planning via Value Function ApproximationIEEE Transactions on Robotics10.1109/TRO.2024.339215440(2791-2810)Online publication date: 22-Apr-2024
  • (2024)Task-Driven Hybrid Model Reduction for Dexterous ManipulationIEEE Transactions on Robotics10.1109/TRO.2024.335953140(1774-1794)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Autonomous Robots
Autonomous Robots  Volume 35, Issue 2-3
October 2013
140 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 October 2013

Author Tags

  1. Angular momentum
  2. Average spatial velocity
  3. Centroidal momentum matrix
  4. Humanoid balance controller
  5. Momentum based balance control
  6. Robot dynamics algorithms

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Cafe-Mpc: A Cascaded-Fidelity Model Predictive Control Framework With Tuning-Free Whole-Body ControlIEEE Transactions on Robotics10.1109/TRO.2024.350413241(837-856)Online publication date: 1-Jan-2025
  • (2024)Online Multicontact Receding Horizon Planning via Value Function ApproximationIEEE Transactions on Robotics10.1109/TRO.2024.339215440(2791-2810)Online publication date: 22-Apr-2024
  • (2024)Task-Driven Hybrid Model Reduction for Dexterous ManipulationIEEE Transactions on Robotics10.1109/TRO.2024.335953140(1774-1794)Online publication date: 1-Jan-2024
  • (2024)Optimization-Based Control for Dynamic Legged RobotsIEEE Transactions on Robotics10.1109/TRO.2023.332458040(43-63)Online publication date: 1-Jan-2024
  • (2023)Impact-aware task-space quadratic-programming controlInternational Journal of Robotics Research10.1177/0278364923119855842:14(1265-1282)Online publication date: 1-Dec-2023
  • (2023)Layered Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and Distributed ApproachesIEEE Transactions on Robotics10.1109/TRO.2023.331989639:6(4728-4748)Online publication date: 1-Dec-2023
  • (2023)VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait RepresentationIEEE Transactions on Robotics10.1109/TRO.2023.329701539:5(3805-3820)Online publication date: 1-Oct-2023
  • (2023)Perceptive Locomotion Through Nonlinear Model-Predictive ControlIEEE Transactions on Robotics10.1109/TRO.2023.327538439:5(3402-3421)Online publication date: 1-Oct-2023
  • (2023)Teleoperation of Humanoid Robots: A SurveyIEEE Transactions on Robotics10.1109/TRO.2023.323695239:3(1706-1727)Online publication date: 1-Jun-2023
  • (2023)BiConMP: A Nonlinear Model Predictive Control Framework for Whole Body Motion PlanningIEEE Transactions on Robotics10.1109/TRO.2022.322839039:2(905-922)Online publication date: 1-Apr-2023
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media