Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

SpaTiaL: monitoring and planning of robotic tasks using spatio-temporal logic specifications

Published: 03 November 2023 Publication History

Abstract

Many tasks require robots to manipulate objects while satisfying a complex interplay of spatial and temporal constraints. For instance, a table setting robot first needs to place a mug and then fill it with coffee, while satisfying spatial relations such as forks need to placed left of plates. We propose the spatio-temporal framework SpaTiaL that unifies the specification, monitoring, and planning of object-oriented robotic tasks in a robot-agnostic fashion. SpaTiaL is able to specify diverse spatial relations between objects and temporal task patterns. Our experiments with recorded data, simulations, and real robots demonstrate how SpaTiaL provides real-time monitoring and facilitates online planning. SpaTiaL is open source and easily expandable to new object relations and robotic applications.

References

[1]
Agostini, A., & Lee, D. (2020). Efficient state abstraction using object-centered predicates for manipulation planning. Preprint retrieved from preprint arXiv:2007.08251
[2]
Aineto, D., Jiménez, S., & Onaindia, E. (2018). Learning STRIPS action models with classical planning. In Proceeding of the international conference on automated planning and scheduling.
[3]
Allen JF Maintaining knowledge about temporal intervals Communications of the ACM 1983 26 11 832-843
[4]
Alur R, Feder T, and Henzinger TA The benefits of relaxing punctuality Journal of the ACM 1996 43 1 116-146
[5]
Baier, C., & Katoen, J. P. (2008). Principles of model checking. MIT Press.
[6]
Barbosa FS, Duberg D, Jensfelt P, and Tumova J Guiding autonomous exploration with signal temporal logic IEEE Robotics and Automation Letters 2019 4 4 3332-3339
[7]
Billard A and Kragic D Trends and challenges in robot manipulation Science 2019 364 6446 eaat8414
[8]
Boyd S, Boyd SP, and Vandenberghe L Convex optimization 2004 Cambridge University Press
[9]
Bylander T The computational complexity of propositional strips planning Artificial Intelligence 1994 69 1–2 165-204
[10]
Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N., Hurtos, N., & Carreras,M. (2015). ROSplan: Planning in the robot operating system. In Proceedings of the international conference on automated planning and scheduling.
[11]
Colledanchise, M., & Ögren, P. (2018). Behavior trees in robotics and AI: An introduction. CRC Press.
[12]
Correll N, Bekris KE, Berenson D, Brock O, Causo A, Hauser K, Okada K, Rodriguez A, Romano JM, and Wurman PR Analysis and observations from the first amazon picking challenge IEEE Transactions on Automation Science and Engineering 2016 15 1 172-188
[13]
Coumans, E., & Bai, Y. (2022). PyBullet, a Python module for physics simulation for games, robotics and machine learning. https://pybullet.org.
[14]
Dantam NT, Kingston ZK, Chaudhuri S, and Kavraki LE Incremental task and motion planning: A constraint-based approach In Robotics: Science and systems 2016 12 1-11
[15]
De Giacomo, G., & Vardi, M. Y. (2013). Linear temporal logic and linear dynamic logic on finite traces. In Proceedings of the ACM international conference on artificial intelligence (pp. 854–860).
[16]
Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., & Tagliasacchi, A. (2020). CvxNet: Learnable convex decomposition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 31–44).
[17]
Devin, C., Abbeel, P., Darrell, T., & Levine, S. (2018). Deep object-centric representations for generalizable robot learning. In Proceedings of the IEEE international conference on robotics and automation (pp. 7111–7118).
[18]
Diehl, M., Paxton, C., & Ramirez-Amaro, K. (2021). Automated generation of robotic planning domains from observations. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6732–6738).
[19]
Donzé, A., Ferrere, T., Maler, O. (2013). Efficient robust monitoring for STL. In International conference on computer aided verification (pp. 264–279). Springer.
[20]
Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. In Proceedings of the international conference on formal modeling and analysis of timed systems (pp. 92–106).
[21]
Driess, D., Ha, J. S., Tedrake, R., & Toussaint, M. (2021). Learning geometric reasoning and control for long-horizon tasks from visual input. In Proceedings of the IEEE international conference on robotics and automation (pp. 14298–14305).
[22]
Driess, D., Ha, J. S., Toussaint, M., & Tedrake, R. (2022). Learning models as functionals of signed-distance fields for manipulation planning. In Conference on robot learning (pp. 245–255).
[23]
Ericson C Real-time collision detection 2004 CRC Press
[24]
Fikes RE, Hart PE, and Nilsson NJ Learning and executing generalized robot plans Artificial intelligence 1972 3 251-288
[25]
Finkemeyer B, Kröger T, and Wahl FM Executing assembly tasks specified by manipulation primitive nets Advanced Robotics 2005 19 5 591-611
[26]
Finucane, C., Jing, G., & Kress-Gazit, H. (2010). LTLMoP: Experimenting with language, temporal logic and robot control. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1988–1993).
[27]
Fox M and Long D PDDL2.1: An extension to PDDL for expressing temporal planning domains Journal of Artificial Intelligence Research 2003 20 61-124
[28]
Fuggitti, F. (2021). LTLf2DFA Github repository. Retrieved July 20, 2021, from https://github.com/whitemech/LTLf2DFA
[29]
Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2017). STRIPS planning in infinite domains (pp. 1–11). Preprint retrieved from arXiv:1701.00287
[30]
Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2020). PDDLStream: Integrating symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of the international conference on automated planning and scheduling (pp. 440–448).
[31]
Ghzouli, R., Berger, T., Johnsen, E. B., Dragule, S., & Wasowski, A. (2020). Behavior trees in action: A study of robotics applications. In Proceedings of the ACM SIGPLAN international conference on software language engineering (pp. 196–209).
[32]
Gillies, S., Bierbaum, A., Lautaportti, K., & Tonnhofer, O. (2007). Shapely: Manipulation and analysis of geometric objects.
[33]
Guadarrama, S., Riano, L., Golland, D., Go, D., Jia, Y., Klein, D., Abbeel, P., Darrell, T. (2013). Grounding spatial relations for human-robot interaction. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1640–1647).
[34]
Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfinding on grid maps. In Proceedings of the AAAI conference on artificial intelligence, Vol. 25.
[35]
He, K., Lahijanian, M., Kavraki, L. E., & Vardi, M. Y. (2015). Towards manipulation planning with temporal logic specifications. In Proceedings of the IEEE international conference on robotics and automation (pp. 346–352).
[36]
He K, Lahijanian M, Kavraki LE, and Vardi MY Automated abstraction of manipulation domains for cost-based reactive synthesis IEEE Robotics and Automation Letters 2018 4 2 285-292
[37]
He, K., Wells, A. M., Kavraki, L. E., & Vardi, M. Y. (2019). Efficient symbolic reactive synthesis for finite-horizon tasks. In Proceedings of the international conference on robotics and automation (pp. 8993–8999).
[38]
Henriksen, J. G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., & Sandholm, A. (1995). Mona: Monadic second-order logic in practice. In International workshop on tools and algorithms for the construction and analysis of systems (pp. 89–110). Springer.
[39]
Iovino M, Scukins E, Styrud J, Ögren P, and Smith C A survey of behavior trees in robotics and AI Robotics and Autonomous Systems 2022 154 104096
[40]
Izatt, G., & Tedrake, R. (2020). Generative modeling of environments with scene grammars and variational inference. In Proceedings of the IEEE international conference on robotics and automation (pp. 6891–6897).
[41]
Jiménez S, De La Rosa T, Fernández S, Fernández F, and Borrajo D A review of machine learning for automated planning The Knowledge Engineering Review 2012 27 4 433-467
[42]
Jund, P., Eitel, A., Abdo, N., & Burgard, W. (2018). Optimization beyond the convolution: Generalizing spatial relations with end-to-end metric learning. In Proceedings of the IEEE international conference on robotics and automation (pp. 4510–4516).
[43]
Kantaros, Y., Malencia, M., Kumar, V., & Pappas, G .J. (2020). Reactive temporal logic planning for multiple robots in unknown environments. In Proceedigns of the IEEE international conference on robotics and automation (pp. 11479–11485).
[44]
Karpas E and Magazzeni D Automated planning for robotics Annual Review of Control, Robotics, and Autonomous Systems 2020 3 417-439
[45]
Kartmann R, Paus F, Grotz M, and Asfour T Extraction of physically plausible support relations to predict and validate manipulation action effects IEEE Robotics and Automation Letters 2018 3 4 3991-3998
[46]
Katayama, M., Tokuda, S., Yamakita, M., & Oyama, H. (2020). Fast LTL-based flexible planning for dual-arm manipulation. In Proceeedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6605–6612).
[47]
Kent, D., Saldanha, C., & Chernova, S. (2017). A comparison of remote robot teleoperation interfaces for general object manipulation. In Proceedings of the ACM/IEEE international conference on human-robot interaction (pp. 371–379).
[48]
Koymans R Specifying real-time properties with metric temporal logic Real-Time Systems 1990 2 4 255-299
[49]
Kress-Gazit H, Eder K, Hoffman G, Admoni H, Argall B, Ehlers R, Heckman C, Jansen N, Knepper R, Křetínskỳ J, et al. Formalizing and guaranteeing human-robot interaction Communications of the ACM 2021 64 9 78-84
[50]
Kress-Gazit H, Fainekos GE, and Pappas GJ Translating structured English to robot controllers Advanced Robotics 2008 22 12 1343-1359
[51]
Kress-Gazit H, Fainekos GE, and Pappas GJ Temporal-logic-based reactive mission and motion planning IEEE Transactions on Robotics 2009 25 6 1370-1381
[52]
Kress-Gazit H, Lahijanian M, and Raman V Synthesis for robots: Guarantees and feedback for robot behavior Annual Review of Control, Robotics, and Autonomous Systems 2018 1 211-236
[53]
Kröger T, Finkemeyer B, and Wahl FM Manipulation primitives-a universal interface between sensor-based motion control and robot programming, Robotic systems for handling and assembly 2010 Springer 293-313
[54]
Kshirsagar, A., Kress-Gazit, H., & Hoffman, G. (2019). Specifying and synthesizing human-robot handovers. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 5930–5936).
[55]
Kupferman O and Vardi MY Model checking of safety properties Formal Methods in System Design 2001 19 3 291-314
[56]
Lacerda, B., Parker, D., & Hawes, N. (2014). Optimal and dynamic planning for Markov decision processes with co-safe LTL specifications. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1511–1516).
[57]
Li, S., Park, D., Sung Y., Shah, J. A., & Roy, N. (2021). Reactive task and motion planning under temporal logic specifications. In Proceedings of the IEEE international conference on robotics and automation (pp. 12618–12624).
[58]
Li, X., Guo, D., Liu, H., & Sun, F. (2022). Embodied semantic scene graph generation. In Conference on robot learning (pp. 1585–1594).
[59]
Li, X., Vasile, C. I., & Belta, C. (2017). Reinforcement learning with temporal logic rewards. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3834–3839).
[60]
Lindemann, L., & Dimarogonas, D. V. (2017). Robust motion planning employing signal temporal logic. In Proceedings of the American control conference (pp. 2950–2955).
[61]
Lindemann L and Dimarogonas DV Control barrier functions for signal temporal logic tasks IEEE Control Systems Letters 2018 3 1 96-101
[62]
Liu, W., Paxton, C., Hermans, T., & Fox, D. (2022). StructFormer: Learning spatial structure for language-guided semantic rearrangement of novel objects. In Proceedings of the international conference on robotics and automation (pp. 6322–6329).
[63]
Loula, J., Allen, K., Silver, T., & Tenenbaum, J. (2020). Learning constraint-based planning models from demonstrations. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 5410–5416).
[64]
Lozano-Perez T Spatial planning: A configuration space approach, Autonomous robot vehicles 1990 Springer 259-271
[65]
Manuelli, L., Gao, W., Florence, P. R., & Tedrake, R. (2019). KPAM: Keypoint affordances for category-level robotic manipulation. In Proceedings of the international symposium on robotics research, Vol. 20 (pp. 132–157). Springer.
[66]
McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins, D. (1998). PDDL-the planning domain definition language. Technical report, Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational.
[67]
Menghi, C., Tsigkanos, C., Berger, T., & Pelliccione, P. (2019). PsALM: Specification of dependable robotic missions. In Proceedings of the IEEE/ACM international conference on software engineering (pp. 99–102).
[68]
Menghi C, Tsigkanos C, Pelliccione P, Ghezzi C, and Berger T Specification patterns for robotic missions IEEE Transactions on Software Engineering 2019 47 10 2208-2224
[69]
Migimatsu T and Bohg J Object-centric task and motion planning in dynamic environments IEEE Robotics and Automation Letters 2020 5 2 844-851
[70]
Mojtahedzadeh R, Bouguerra A, Schaffernicht E, and Lilienthal AJ Support relation analysis and decision making for safe robotic manipulation tasks Robotics and Autonomous Systems 2015 71 99-117
[71]
Nicolescu, M., Arnold, N., Blankenburg, J., Feil-Seifer, D., Banisetty, S., Nicolescu, M., Palmer, A., Monteverde, T. (2019). Learning of complex-structured tasks from verbal instruction. In Proceedings of the IEEE-RAS international conference on humanoid robots (pp. 747–754).
[72]
Ögren P Convergence analysis of hybrid control systems in the form of backward chained behavior trees IEEE Robotics and Automation Letters 2020 5 4 6073-6080
[73]
Oleynikova, H., Millane, A., Taylor, Z., Galceran, E., Nieto, J., & Siegwart, R. (2016). Signed distance fields: A natural representation for both mapping and planning. In RSS workshop: Geometry and beyond-representations, physics, and scene understanding for robotics.
[74]
Pan, T., Wells, A. M., Shome, R., & Kavraki, L. E. (2021). A general task and motion planning framework for multiple manipulators. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3168–3174).
[75]
Panda S, Hafez AA, and Jawahar C Single and multiple view support order prediction in clutter for manipulation Journal of Intelligent & Robotic Systems 2016 83 2 179-203
[76]
Paus, F., Huang, T., & Asfour, T. (2020). Predicting pushing action effects on spatial object relations by learning internal prediction models. In Proceedings of the IEEE international conference on robotics and automation (pp. 10584–10590).
[77]
Paxton, C., Xie, C., Hermans, T., & Fox, D. (2022). Predicting stable configurations for semantic placement of novel objects. In Conference on robot learning (pp. 806–815).
[78]
Pednault, E. P. (1989). ADL: Exploring the middle ground between STRIPS and the situation calculus. In Proceedings of the international conference on principles of knowledge representaion and reasoning (pp. 324–332).
[79]
Pek, C., Muxfeldt, A., & Kubus, D. (2016). Simplifying synchronization in cooperative robot tasks-an enhancement of the manipulation primitive paradigm. In Proceedings of the IEEE international conference on emerging technologies and factory automation (pp. 1–8).
[80]
Plaku E and Karaman S Motion planning with temporal-logic specifications: Progress and challenges AI Communications 2016 29 1 151-162
[81]
Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the annual symposium on foundations of computer science (pp. 46–57).
[82]
Raman, V., Donzé, A., Maasoumy, M., Murray, R. M., Sangiovanni-Vincentelli, A., & Seshia, S. A. (2014). Model predictive control with signal temporal logic specifications. In Proceedings of the IEEE conference on decision and control (pp. 81–87).
[83]
Ramirez-Amaro K, Beetz M, and Cheng G Transferring skills to humanoid robots by extracting semantic representations from observations of human activities Artificial Intelligence 2017 247 95-118
[84]
Ramirez-Amaro, K., Kim, E. S., Kim, J., Zhang, B. T., Beetz, M., & Cheng, G. (2013). Enhancing human action recognition through spatio-temporal feature learning and semantic rules. In Proceedings of the IEEE-RAS international conference on humanoid robots (pp. 456–461).
[85]
Robicquet, A., Sadeghian, A., Alahi, A., & Savarese, S. (2016). Learning social etiquette: Human trajectory understanding in crowded scenes. In Proceedings of the European conference on computer vision (pp. 549–565). Springer.
[86]
Rosman B and Ramamoorthy S Learning spatial relationships between objects The International Journal of Robotics Research 2011 30 11 1328-1342
[87]
Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2018). Decomposition of finite LTL specifications for efficient multi-agent planning. In Distributed autonomous robotic systems (pp. 253–267).
[88]
Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J, Patil S, Goldberg K, and Abbeel P Motion planning with sequential convex optimization and convex collision checking The International Journal of Robotics Research 2014 33 9 1251-1270
[89]
Sharma, M., Liang, J., Zhao, J., LaGrassa, A., & Kroemer, O. (2020). Learning to compose hierarchical object-centric controllers for robotic manipulation. In Proceedings of the conference on robot learning, Vol. 155 (pp. 822–844).
[90]
Spawn-Lee, S. A., Lark, T. J., Gibbs, H. K., Houghton, R. A., Kucharik, C. J., Malins, C., Pelton, R. E., Robertson, G. P. (2021). Lark Github repository. Retrieved July 20, 2021, from https://github.com/lark-parser/lark
[91]
Shridhar, M., Manuelli, L., & Fox, D. (2022). CLIPort: What and where pathways for robotic manipulation. In Conference on robot learning (pp. 894–906).
[92]
Silver, T., Chitnis, R., Tenenbaum, J. B., Kaelbling, L. P., & Lozano-Pérez, T. (2021). Learning symbolic operators for task and motion planning. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3182–3189).
[93]
Skubic M, Perzanowski D, Blisard S, Schultz A, Adams W, Bugajska M, and Brock D IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) Spatial language for human-robot dialogs 2004 34 2 154-167
[94]
Sobti, S., Shome, R., Chaudhuri, S., & Kavraki, L. E. (2021). A sampling-based motion planning framework for complex motor actions. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6928–6934).
[95]
Sprague, C. I., Özkahraman,Ö., Munafo, A., Marlow, R., Phillips, A., & Ögren, P. (2018). Improving the modularity of AUV control systems using behaviour trees. In Proceedings of the IEEE/OES autonomous underwater vehicle workshop (pp. 1–6).
[96]
Toussaint, M. (2015). Logic-geometric programming: An optimization-based approach to combined task and motion planning. In Proceedings of the international joint conference on artificial intelligence.
[97]
Toussaint, M. A., Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2018). Differentiable physics and stable modes for tool-use and manipulation planning. In Robotics: Science and systems foundation.
[98]
Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., & Rus, D. (2013). Least-violating control strategy synthesis with safety rules. In Proceedings of the international conference on hybrid systems: computation and control (pp. 1–10).
[99]
van Waveren S, Carter EJ, Örnberg O, and Leite I Exploring non-expert robot programming through crowdsourcing Frontiers in Robotics and AI 2021 8 242
[100]
van Waveren, S., Pek, C., Tumova, J., & Leite, I. (2022). Correct me if I’m wrong: Using non-experts to repair reinforcement learning policies. In Proceedings of the ACM/IEEE international conference on human-robot interaction (pp. 1–9).
[101]
Vasile, C. I., Tumova, J., Karaman, S., Belta, C., & Rus, D. (2017). Minimum-violation scLTL motion planning for mobility-on-demand. In Proceedings of the IEEE international conference on robotics and automation (pp. 1481–1488).
[102]
Vasilopoulos, V., Kantaros, Y., Pappas, G. J., & Koditschek, D. E. (2021). Reactive planning for mobile manipulation tasks in unexplored semantic environments. In Proceedings of the IEEE international conference on robotics and automation (pp. 6385–6392).
[103]
Wang, J., & Olson, E. (2016). Apriltag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4193–4198).
[104]
Wells, A. M., Dantam, N. T., Shrivastava, A., & Kavraki, L. E. (2019). Learning feasibility for task and motion planning in tabletop environments. IEEE Robotics and Automation Letters,4(2), 1255–1262.
[105]
Wells, A. M., Lahijanian, M., Kavraki, L. E., & Vardi, M. Y. (2020). LTLf synthesis on probabilistic systems. In Proceedings of the international symposium on games, automata, logics, and formal verification, Vol. 326 (pp. 166–181).
[106]
Wells, M., Kingston, Z., Lahijanian, M., Kavraki, L. E., & Vardi, M. Y. (2021). Finite-horizon synthesis for probabilistic manipulation domains. In Proceedings of the IEEE international conference on robotics and automation (pp. 6336–6342).
[107]
Yuan, W., Paxton, C., Desingh, K., & Fox, D. (2022). SORNet: Spatial object-centric representations for sequential manipulation. In Conference on Robot Learning (pp. 148–157).
[108]
Zhang, H., Lu, Y., Yu, C., Hsu, D., La, X., & Zheng, N. (2021). Invigorate: Interactive visual grounding and grasping in clutter, pp. 1–11. Preprint retrieved from arXiv:2108.11092
[109]
Zhao Z, Zhou Z, Park M, and Zhao Y SyDeBO: Symbolic-decision-embedded bilevel optimization for long-horizon manipulation in dynamic environments IEEE Access 2021 9 128817-128826
[110]
Zucker M, Ratliff N, Dragan AD, Pivtoraiko M, Klingensmith M, Dellin CM, Bagnell JA, and Srinivasa SS CHOMP: Covariant hamiltonian optimization for motion planning The International Journal of Robotics Research 2013 32 9–10 1164-1193

Index Terms

  1. SpaTiaL: monitoring and planning of robotic tasks using spatio-temporal logic specifications
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Autonomous Robots
          Autonomous Robots  Volume 47, Issue 8
          Dec 2023
          598 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 03 November 2023
          Accepted: 26 September 2023
          Received: 31 December 2022

          Author Tags

          1. Task and motion planning
          2. Spatio-temporal logics
          3. Monitoring
          4. Object-centric planning

          Qualifiers

          • Research-article

          Funding Sources

          • Wallenberg AI, Autonomous Systems and Software Program (WASP)
          • Swedish Research Council (VR)
          • Knut and Alice Wallenberg Foundation

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 13 Sep 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media