Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A comparison of reduced and unreduced KKT systems arising from interior point methods

Published: 01 September 2017 Publication History

Abstract

We address the iterative solution of KKT systems arising in the solution of convex quadratic programming problems. Two strictly related and well established formulations for such systems are studied with particular emphasis on the effect of preconditioning strategies on their relation. Constraint and augmented preconditioners are considered, and the choice of the augmentation matrix is discussed. A theoretical and experimental analysis is conducted to assess which of the two formulations should be preferred for solving large-scale problems.

References

[1]
Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11, 275---302 (1999)
[2]
Axelsson, O.: Preconditioners for regularized saddle point matrices. J. Numer. Math. 19(2), 91---112 (2011)
[3]
Baryamureeba, V., Steihaug, T.: On the convergence of an inexact primal-dual interior point method for linear programming. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Proceedings of the 5th International Conference on Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol. 3743, pp. 629---637. Springer, Berlin (2006)
[4]
Bellavia, S.: An inexact interior point method. J. Optim. Theory Appl. 96, 109---121 (1998)
[5]
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1---137 (2005)
[6]
Benzi, M., Olshanskii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28, 2095---2113 (2006)
[7]
Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28, 149---171 (2004)
[8]
Cafieri, S., D'Apuzzo, M., De Simone, V., di Serafino, D.: Stopping criteria for inner iterations in inexact potential reduction methods: a computational study. Comput. Optim. Appl. 36, 165---193 (2007)
[9]
Cao, Zhi-Hao: Augmentation block preconditioners for saddle point-type matrices with singular (1, 1) blocks. Numer. Linear Algebra Appl. 15, 515---533 (2008)
[10]
Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Program. 130, 415---445 (2011)
[11]
D'Apuzzo, M., De Simone, V., di Serafino, D.: On mutual impact of linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45, 283---310 (2010)
[12]
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19, 400---408 (1982)
[13]
Dollar, H.S.: Constraint-style preconditioners for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 29, 672---684 (2007)
[14]
Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 28, 170---189 (2006)
[15]
Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Using constraint preconditioners with regularized saddle-point problems. Comput. Optim. Appl. 36, 249---270 (2007)
[16]
Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10, 673---688 (2003)
[17]
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)
[18]
Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43, 91---107 (2002)
[19]
Forsgren, A., Gill, P.E., Griffin, J.D.: Iterative solution of augmented systems arising in interior methods. SIAM J. Optim. 18, 666---690 (2007)
[20]
Forsgren, A., Gill, P.E., Shinnerl, J.R.: Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization. SIAM J. Optim. 17, 187---211 (1996)
[21]
Friedlander, M.P., Orban, D.: A primal-dual regularization interior-point method for convex quadratic programs. Math. Program. Comput. 4, 71---107 (2012)
[22]
Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic programming. SIAM J. Optim. 23, 1510---1527 (2013)
[23]
Gould, N.I.M., Orban, D., Toint, PhL: Cuter (and sifdec), a contrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373---394 (2003)
[24]
Gould, N.I.M., Simoncini, V.: Spectral analysis of saddle point matrices with indefinite leading blocks. SIAM J. Matrix Anal. Appl. 31, 1152---1171 (2009)
[25]
Greif, C., Moulding, E., Orban, D.: Bounds on eigenvalues of matrices arising from interior-point methods. SIAM J. Optim. 24, 49---83 (2014)
[26]
Greif, C., Schötzau, D.: Preconditioners for saddle point linear systems with highly singular (1, 1) blocks. Electron. Trans. Numer. Anal. 22, 114---121 (2006)
[27]
Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008)
[28]
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300---1317 (2000)
[29]
Lukšan, L., Vlă¿ek, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5, 219---247 (1998)
[30]
Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11&12, 671---681 (1999)
[31]
Morini, B., Simoncini, V., Tani, M.: Spectral estimates for unreduced symmetric KKT systems arising from interior point methods. Numer. Linear Algebra Appl. 23, 776---800 (2016)
[32]
Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617---629 (1975)
[33]
PDCO: Primal-Dual interior method for Convex Objectives. http://stanford.edu/group/software/pdco
[34]
Rees, T., Greif, C.: A preconditioner for linear systems arising from interior point optimization methods. SIAM J. Sci. Comput. 29, 1992---2007 (2007)
[35]
Rozlo¿ník, M., Simoncini, V.: Krylov subspace methods for saddle point problem with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368---391 (2002)
[36]
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856---869 (1986)
[37]
Saunders, M.A.: Cholesky-based methods for sparse least-squares: the benefit of regularization. In: Adams, L., Nazareth, J.L. (eds.) Linear and Nonlinear Conjugate Gradient-Related Methods, pp. 92---100. SIAM, Philadelphia (1994)
[38]
Shen, S.Q., Huang, T.Z., Zhang, J.S.: Augmentation block triangular preconditioners for regularized saddle point problems. SIAM J. Matrix Anal. Appl. 33, 721---741 (2012)
[39]
Wright, S.J.: Stability of linear equations solvers in interior-point methods. SIAM J. Matrix Anal. Appl. 16, 1287---1307 (1995)
[40]
Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

Cited By

View all
  • (2023)Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning TechniquesJournal of Optimization Theory and Applications10.1007/s10957-023-02194-4197:3(1061-1103)Online publication date: 5-Apr-2023
  • (2023)A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programmingComputational Optimization and Applications10.1007/s10589-023-00486-z86:1(1-48)Online publication date: 16-Jun-2023
  • (2020)Variable parameter Uzawa method for solving a class of block three-by-three saddle point problemsNumerical Algorithms10.1007/s11075-019-00863-y85:4(1233-1254)Online publication date: 21-Jan-2020
  • Show More Cited By
  1. A comparison of reduced and unreduced KKT systems arising from interior point methods

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Computational Optimization and Applications
    Computational Optimization and Applications  Volume 68, Issue 1
    September 2017
    189 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 September 2017

    Author Tags

    1. Convex quadratic programming
    2. Interior point methods
    3. KKT systems
    4. Preconditioners

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning TechniquesJournal of Optimization Theory and Applications10.1007/s10957-023-02194-4197:3(1061-1103)Online publication date: 5-Apr-2023
    • (2023)A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programmingComputational Optimization and Applications10.1007/s10589-023-00486-z86:1(1-48)Online publication date: 16-Jun-2023
    • (2020)Variable parameter Uzawa method for solving a class of block three-by-three saddle point problemsNumerical Algorithms10.1007/s11075-019-00863-y85:4(1233-1254)Online publication date: 21-Jan-2020
    • (2020)Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocksNumerische Mathematik10.1007/s00211-020-01143-x146:2(335-368)Online publication date: 1-Oct-2020
    • (2019)Quasi-Newton approaches to interior point methods for quadratic problemsComputational Optimization and Applications10.1007/s10589-019-00102-z74:1(93-120)Online publication date: 1-Sep-2019
    • (2019)Alternating positive semidefinite splitting preconditioners for double saddle point problemsCalcolo: a quarterly on numerical analysis and theory of computation10.1007/s10092-019-0322-756:3(1-17)Online publication date: 1-Sep-2019
    • (2018)An inexact Newton method for solving complementarity problems in hydrodynamic lubricationCalcolo: a quarterly on numerical analysis and theory of computation10.1007/s10092-018-0244-955:1(1-28)Online publication date: 1-Mar-2018
    • (2017)Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic ProgrammingJournal of Optimization Theory and Applications10.1007/s10957-017-1170-8175:2(450-477)Online publication date: 1-Nov-2017

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media