Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The characterisation of the smallest two fold blocking sets in PG(n, 2)

Published: 01 May 2012 Publication History

Abstract

We classify the smallest two fold blocking sets with respect to the ( n k )-spaces in PG( n , 2). We show that they either consist of two disjoint k -dimensional subspaces or are equal to a ( k + 1)-dimensional space minus one point.

References

[1]
Beutelspacher A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9 , 130-157 (1980).
[2]
Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the McDonald codes. J. Comb. Theory 1 , 96-104 (1966).
[3]
Govaerts P., Storme L.: The classification of the smallest nontrivial blocking sets of PG ( n , 2). J. Comb. Theory A 113 , 1543-1548 (2006).
[4]
Heim U.: Blockierende Mengen in endlichen projektiven Räumen. (German) {Blocking sets in finite projective spaces} Dissertation, Justus-Liebig-Universität Giessen, Giessen, 1995. Mitt. Math. Sem. Giessen 226 , 82 (1996).
[5]
Helleseth T.: A characterization of codes meeting the Griesmer bound. Info. Control 50 , 128-159 (1981).
[6]
Hirschfeld J.W.P.: Finite projective spaces of three dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985).
  1. The characterisation of the smallest two fold blocking sets in PG(n, 2)

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Designs, Codes and Cryptography
      Designs, Codes and Cryptography  Volume 63, Issue 2
      May 2012
      142 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 May 2012

      Author Tags

      1. 05B25
      2. 51E20
      3. 51E21
      4. Blocking sets

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media