Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Guest Editorial: Special Issue in Honor of Scott A. Vanstone

Published: 01 December 2015 Publication History

Abstract

No abstract available.

References

[1]
Mullin R., Vanstone S.: An approximation of BIBDs by regular pairwise balanced designs; Case $$\lambda \ge 2$$¿¿2. In: Proceedings of the Third Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 61---72 (1973).
[2]
Mullin R., Vanstone S.: On the size of $$(r,2)$$(r,2)-designs. In: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, pp. 445---457 (1973).
[3]
Vanstone S.: The extendability of $$(r,1)-$$(r,1)-designs. In: Proceedings of the Third Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 409---418 (1973).
[4]
Mullin R., Vanstone S.: A bound for $$v_0 (r,\lambda )$$v0(r,¿). In: Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, pp. 661---673 (1974).
[5]
Vanstone S.: Geometries and designs. Utilitas Math. 6, 337---341 (1974).
[6]
McCarthy D., Mullin R., Schellenberg P., Stanton R., Vanstone S.: On the non-existence of (7,1)-designs with $$v=31, b \le 43$$v=31,b≤43. In: Proceedings of the Fifth Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 479---495 (1975).
[7]
Mullin R., Vanstone S.: On regular pairwise balanced designs of order 6 and index 1. Utilitas Math. 8, 349---369 (1975).
[8]
Vanstone S.: A note on a construction of BIBDs. Utilitas Math. 7, 321---322 (1975).
[9]
Vanstone S.: The non-existence of (7,1)-designs with $$v=31, b \ge 50$$v=31,b¿50. In: Proceedings of the Fifth Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 497---532 (1975).
[10]
Deza M., Mullin R., Vanstone S.: Room squares and equidistant permutation arrays. Ars Comb. 2, 235---244 (1976).
[11]
Hoffman F., Schellenberg P., Vanstone S.: A starter-adder approach to equidistant permutation arrays and generalized Room squares. Ars Comb. 1, 307---319 (1976).
[12]
McCarthy D., Mullin R., Schellenberg P., Stanton R., Vanstone S.: On approximations to a finite projective plane of order 6. Ars Comb. 2, 111---168 (1976).
[13]
McCarthy D., Stanton R., Vanstone S.: On an extremal class of $$(r,\lambda )$$(r,¿)-designs related to a problem of Doehlert and Klee. Ars Comb. 2, 305---317 (1976).
[14]
Mullin R., Vanstone S.: A generalization of a theorem of Totten. J. Aust. Math. Soc. Ser. A 22, 494---500 (1976).
[15]
Mullin R., Vanstone S.: On the non-existence of a certain design. Utilitas Math. 9, 193---207 (1976).
[16]
Schellenberg P., Vanstone S.: Some results on equidistant permutation arrays of index 1. In: Proceedings of the Sixth Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 389---410 (1976).
[17]
Vanstone S.: Towards the uniqueness of a (7,1)-design on 31 varieties. In: Proceedings of the Sixth Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 265---285 (1976).
[18]
McCarthy D., Vanstone S.: Embedding $$(r,1)$$(r,1)-designs in finite projective planes. Discret. Math. 19, 67---76 (1977).
[19]
McCarthy D., Vanstone S.: On $$(r,\lambda )$$(r,¿)-designs and finite projective planes. Utilitas Math. 11, 57---74 (1977).
[20]
Mullin R., Singhi N., Vanstone S.: Embedding the affine complement of three intersecting lines in a finite projective plane. J. Aust. Math. Soc. Ser. A 24, 458---464 (1977).
[21]
Schellenberg P., van Rees G., Vanstone S.: The existence of balanced tournament designs. Ars Comb. 3, 303---318 (1977).
[22]
Schellenberg P., Vanstone S.: Recursive constructions for equidistant permutation arrays. J. Aust. Math. Soc. Ser. A 24, 216---223 (1977).
[23]
Schellenberg P., Vanstone S.: A construction for BIBDs based on an intersection property. Utilitas Math. 11, 313---324 (1977).
[24]
Stanton R., Vanstone S.: Some lower bounds on the size of Doehlert---Klee designs. Ars Comb. 4, 123---132 (1977).
[25]
Stanton R., Vanstone S.: Further results on a problem of Doehlert and Klee. Utilitas Math. 12, 263---271 (1977).
[26]
Vanstone S., Schellenberg P.: A construction for equidistant permutation arrays of index one. J. Comb. Theory Ser. A 23, 180---186 (1977).
[27]
Deza M., Mullin R., Vanstone S.: Orthogonal systems. Aequationes Math. 17, 322---330 (1978).
[28]
Deza M., Vanstone S.: Bounds for permutation arrays. J. Stat. Plann. Inference 2, 197---209 (1978).
[29]
Schellenberg P., van Rees G., Vanstone S.: Four pairwise orthogonal Latin squares of side 15. Ars Comb. 6, 141---150 (1978).
[30]
Vanstone S.: Extremal $$(r,\lambda )$$(r,¿)-designs. Discret. Math. 23, 57---66 (1978).
[31]
Vanstone S.: Pairwise Orthogonal generalized room squares and equidistant permutation arrays. J. Comb. Theory Ser. A 25, 84---89 (1978).
[32]
McCarthy D., Singhi N., Vanstone S.: A graph theoretical approach to embedding $$(r,1)$$(r,1)-designs. In: Topics in Graph Theory, pp. 289---304. Academic Press, London (1979).
[33]
McCarthy D., Vanstone S.: On the structure of regular pairwise balanced designs. Discret. Math. 25, 237---244 (1979).
[34]
Mullin R., Vanstone S.: Embedding the pseudocomplement of a quadrilateral in a finite projective plans. Ann. N. Y. Acad. Sci. 319, 405---413 (1979).
[35]
Stanton R., Vanstone S.: Some theorems on $$DK$$DK-designs. Ars Comb. 8, 117---130 (1979).
[36]
Vanstone S.: A note on a class of maximal equidistant permutation arrays. Utilitas Math. 16, 217---221 (1979).
[37]
Vanstone S.: Resolvable $$(r,\lambda )$$(r,¿)-designs and the Fisher inequality. J. Aust. Math. Soc. Ser. A 28, 471---478 (1979).
[38]
Vanstone S.: The asymptotic behaviour of equidistant permutation arrays. Can. J. Math. 31, 45---48 (1979).
[39]
Vanstone S.: Irreducible regular pairwise balanced designs. Utilitas Math. 15, 249---259 (1979).
[40]
Deza M., Vanstone S.: Some maximal equidistant permutation arrays. J. Korean Math. Soc. 17, 45---51 (1980).
[41]
Fuji-Hara R., Vanstone S.: Transversal designs and doubly-resolvable designs. Eur. J. Comb. 1, 219---223 (1980).
[42]
Fuji-Hara R., Vanstone S.: On the spectrum of doubly resolvable Kirkman systems. Congr. Numer. 28, 399---407 (1980).
[43]
Fuji-Hara R., Vanstone, S.: On automorphisms of doubly resolvable designs. Lecture Notes in Mathematics, vol. 829, pp. 29---36 (1980).
[44]
Gardner B., Vanstone S.: Some results on irreducible $$(r, \lambda )$$(r,¿)-designs. Utilitas Math. 18, 291---300 (1980).
[45]
Mathon R., Vanstone S.: On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays. Discret. Math. 30, 157---172 (1980).
[46]
Mathon R., Vanstone S.: Doubly resolvable Kirkman systems. Congr. Numer. 29, 611---625 (1980).
[47]
Mullin R., Schellenberg P., van Rees G., Vanstone S.: On the construction of perpendicular arrays. Utilitas Math. 18, 141---160 (1980).
[48]
Mullin R., Schellenberg P., Stinson D., Vanstone S.: Some results on the existence of squares. Ann. Discret. Math. 6, 257---274 (1980).
[49]
Mullin R., Vanstone S.: Steiner systems and Room squares. Ann. Discret. Math. 7, 95---104 (1980).
[50]
Schellenberg P., Vanstone S.: The existence of Howell designs of side $$2n$$2n and order $$2n+2$$2n+2. Congr. Numer. 29, 879---887 (1980).
[51]
Vanstone S.: Doubly resolvable designs. Discret. Math. 29, 77---86 (1980).
[52]
Colbourn C., Vanstone S.: Doubly resolvable twofold triple systems. In: Proceedings of the Eleventh Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 219---223 (1981).
[53]
Deza M., Mullin R., Vanstone S.: Recent results on $$(r,\lambda )$$(r,¿)-designs and some related areas. Int. J. Math. Stat. 4, 140---158 (1981).
[54]
Fuji-Hara R., Vanstone S.: Recursive constructions for skew resolutions in affine geometries. Aequationes Math. 23, 242---251 (1981).
[55]
Fuji-Hara R., Vanstone S.: Equidistant permutation arrays from finite geometries. Congr. Numer. 32, 333---345 (1981).
[56]
Fuji-Hara R., Vanstone S.: Mutually orthogonal resolutions from finite geometries. Ars Comb. 12, 189---207 (1981).
[57]
Mullin R., Schellenberg P., Vanstone S., Wallis W.: On the existence of frames. Discret. Math. 37, 79---104 (1981).
[58]
Schellenberg P., Stinson D., Vanstone S., Yates J.: The existence of Howell designs of side $$n+1$$n+1 and order $$2n$$2n. Combinatorica 1, 289---301 (1981).
[59]
Deza M., Vanstone S.: On maximal equidistant permutation arrays. Ann. Discret. Math. 12, 87---94 (1982).
[60]
Fuji-Hara R., Vanstone S.: Orthogonal resolutions of lines in $$AG(n, q)$$AG(n,q). Discret. Math. 41, 17---28 (1982).
[61]
Mullin R., Stinson D., Vanstone S.: Kirkman triple systems containing maximum subdesigns. Utilitas Math. 21C, 283---300 (1982).
[62]
van Rees G., Vanstone S.: Equidistant permutation arrays: a bound. J. Aust. Math. Soc. Ser. A 33, 262---274 (1982).
[63]
Vanstone S.: On mutually orthogonal resolutions and near-resolutions. Ann. Discret. Math. 15, 357---369 (1982).
[64]
Vanstone S., Rosa A.: Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides. Ars Comb. 14, 199---212 (1982).
[65]
Fuji-Hara R., Vanstone S.: Affine geometries obtained from projective geometries and skew resolutions. Ann. Discret. Math. 18, 355---376 (1983).
[66]
Goulden I., Vanstone S.: The number of solutions to an equation arising from a problem on Latin squares. J. Aust. Math. Soc. Ser. A 34, 138---142 (1983).
[67]
Rosa A., Vanstone S.: Kirkman cubes. Ann. Discret. Math. 18, 699---712 (1983).
[68]
Vanstone S.: A note on the existence of strong Kirkman cubes. Ann. Discret. Math. 17, 629---632 (1983).
[69]
Vanstone S.: Some results on strong skew resolutions. Matematiche (Catania) 38, 173---180 (1983).
[70]
Blake I., Fuji-Hara R., Mullin R., Vanstone S.: Computing logarithms in finite fields of characteristic two. SIAM J. Algebraic Discret. Methods 5, 276---285 (1984).
[71]
Fuji-Hara R., Vanstone S.: On a line partitioning problem for $$PG(2k, q)$$PG(2k,q). Rendiconti del Seminario Matemàtico di Brescia 7, 337---341 (1984).
[72]
Jackson D., Vanstone S. (eds.): Enumeration and Design. Academic Press, London (1984).
[73]
Jimbo M., Vanstone S.: Recursive constructions for resolvable and doubly resolvable 1-rotational Steiner 2-designs. Utilitas Math. 26, 45---61 (1984).
[74]
Lamken E., Vanstone S.: Complementary Howell designs of side $$2n$$2n and order $$2n+2$$2n+2. Congr. Numer. 41, 83---113 (1984).
[75]
Mullin R., Vanstone S.: Asymptotic properties of locally extensible designs. Geom. Dedicata 15, 269---277 (1984).
[76]
Stinson D., Vanstone S.: A note on non-isomorphic Kirkman triple systems. J. Comb. Inf. Syst. Sci. 9, 113---116 (1984).
[77]
Blake I., Mullin R., Vanstone S.: Computing logarithms in $$GF(2^n)$$GF(2n). In: Advances in Cryptology--CRYPTO '85. Lecture Notes in Computer Science, vol. 196, pp. 73---82 (1985).
[78]
Gionfriddo M., Vanstone S.: On $$L_2$$L2-colourings of a graph. J. Inf. Optim. Sci. 6, 243---246 (1985).
[79]
Kocay W., Stinson D., Vanstone S.: On strong starters in cyclic groups. Discret. Math. 56, 45---60 (1985).
[80]
Lamken E., Mullin R., Vanstone S.: Some non-existence results on twisted planes related to minimum covers. Congr. Numer. 48, 265---275 (1985).
[81]
Lamken E., Vanstone S.: The existence of factored balanced tournament designs. Ars Comb. 19, 157---160 (1985).
[82]
Lamken E., Vanstone S.: The existence of $$KS_k(v; \mu, \lambda )$$KSk(v¿μ,¿): I. The main constructions. Utilitas Math. 27, 111---130 (1985).
[83]
Lamken E., Vanstone S.: The existence of $$KS_k(v; \mu, \lambda )$$KSk(v¿μ,¿): II. Special constructions. Utilitas Math. 27, 131---155 (1985).
[84]
Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs of side $$4n+1$$4n+1. Ars Comb. 20, 29---44 (1985).
[85]
Rosa A., Vanstone S.: On the existence of strong Kirkman cubes of order 39 and block size 3. Ann. Discret. Math. 26, 309---319 (1985).
[86]
Stinson D., Vanstone S.: A Kirkman square of order 51 and block size 3. Discret. Math. 55, 107---111 (1985).
[87]
Stinson D., Vanstone S.: A few more balanced Room squares. J. Aust. Math. Soc. Ser. A 39, 344---352 (1985).
[88]
Stinson D., Vanstone S.: Some non-isomorphic Kirkman triple systems of order 39 and 51. Utilitas Math. 27, 199---205 (1985).
[89]
Jungnickel D., Vanstone S.: On resolvable designs $$S_3(3; 4, v)$$S3(3-4,v). J. Comb. Theory Ser. A 43, 334---337 (1986).
[90]
Lamken E., Vanstone S.: Designs with mutually orthogonal resolutions. Eur. J. Comb. 7, 249---257 (1986).
[91]
Lamken E., Vanstone S.: Elliptic semiplanes and group divisible designs with orthogonal resolutions. Aequationes Math. 30, 80---92 (1986).
[92]
Lamken E., Vanstone S.: Existence results for $$KS_3(v; 2,4)$$KS3(v¿2,4)s. Discret. Math. 62, 197---210 (1986).
[93]
Lamken E., Vanstone S.: A generalization of the Room square problem. Congr. Numer. 51, 265---276 (1986).
[94]
Stinson D., Vanstone S.: Orthogonal packings in $$PG(5,2)$$PG(5,2). Aequationes Math. 31, 159---168 (1986).
[95]
Colbourn C., Curran D., Vanstone S.: Recursive constructions for Kirkman squares with block size 3. Utilitas Math. 32, 169---174 (1987).
[96]
Fuji-Hara R., Vanstone S.: The existence of orthogonal resolutions of lines in $$AG(n, q)$$AG(n,q). J. Comb. Theory Ser. A 45, 139---147 (1987).
[97]
Fuji-Hara R., Vanstone S.: Balanced Room squares from finite geometries and their generalizations. Ann. Discret. Math. 34, 179---188 (1987).
[98]
Furino S., Vanstone S.: Hyperplane skew resolutions in spaces of even dimension. Ars Comb. 24, 63---69 (1987).
[99]
Jungnickel D., Vanstone S.: Hyperfactorizations of graphs and 5-designs. Kuwait J. Math. 14, 213---223 (1987).
[100]
Jungnickel D., Vanstone S.: Conical embeddings of Steiner systems. Rendiconti del Circolo Matematico di Palermo, Series II(36), 90---94 (1987).
[101]
Koyama K., Vanstone S.: How to demonstrate the breaking of public key cryptosystems. In: Proceedings of the 1987 Workshop on Cryptography and Information Security, pp. 161---170 (1987).
[102]
Lamken E., Mills W., Mullin R., Vanstone S.: Coverings of pairs by quintuples. J. Comb. Theory Ser. A 44, 49---68 (1987).
[103]
Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs of side $$4n+3$$4n+3. Ann. Discret. Math. 34, 319---338 (1987).
[104]
Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs. Ann. Discret. Math. 34, 339---352 (1987).
[105]
Lamken E., Vanstone S.: Skew transversals in frames. J. Combin. Math. Comb. Comput. 2, 37---50 (1987).
[106]
Agnew G., Mullin R., Vanstone S.: An interactive data exchange protocol based on discrete exponentiation. In: Advances in Cryptology--EUROCRYPT '88. Lecture Notes in Computer Science, vol. 453, pp. 159---166 (1988).
[107]
Agnew G., Mullin R., Vanstone S.: Fast exponentiation in $$GF(2^{n})$$GF(2n). In: Advances in Cryptology--EUROCRYPT '88. Lecture Notes in Computer Science, vol. 453, pp. 251---255 (1988).
[108]
Blake I., van Oorschot P., Vanstone S.: Complexity issues for public key cryptography. Perform. Limits Commun. Theory Pract. 142, 75---97 (1988).
[109]
Curran D., Vanstone S.: Doubly resolvable designs from generalized Bhaskar Rao designs. Discret. Math. 73, 49---63 (1988---1989).
[110]
Fuji-Hara R., Vanstone S.: Hyperplane skew resolutions and their applications. J. Comb. Theory Ser. A 47, 134---144 (1988).
[111]
Hall Jr M., Roth R., van Rees G., Vanstone S.: On designs $$(22,33,12,8,4)$$(22,33,12,8,4). J. Comb. Theory Ser. A 47, 157---175 (1988).
[112]
Lamken E., Vanstone S.: The existence of a class of Kirkman squares of index 2. J. Aust. Math. Soc. Ser. A 44, 33---41 (1988).
[113]
Lamken E., Vanstone S.: Orthogonal resolutions in odd balanced tournament designs. Gr. Comb. 4, 241---255 (1988).
[114]
Lamken E., Vanstone S.: A note on group divisible designs with mutually orthogonal resolutions. J. Aust. Math. Soc. Ser. A 44, 397---401 (1988).
[115]
Lamken E., Vanstone S.: On the existence of $$(2,4;3, m, h)$$(2,4-3,m,h)-frames for $$h=1,3$$h=1,3 and $$6$$6. J. Comb. Math. Combin. Comput. 3, 135---151 (1988).
[116]
Mullin R., Onyszchuk I., Vanstone S., Wilson, R.: Optimal normal bases in $$GF(p^{n})$$GF(pn), Discret. Appl. Math. 22 149---161 (1988---1989).
[117]
Stinson D., Vanstone S.: A combinatorial approach to threshold schemes. SIAM J. Discret. Math. 2, 230---236 (1988).
[118]
Ash D., Blake I., Vanstone S.: Low complexity normal bases. Discret. Appl. Math. 25, 191---210 (1989).
[119]
Beutelspacher A., Jungnickel D., Vanstone S.: On the chromatic index of a finite projective space. Geom. Dedicata 32, 313---318 (1989).
[120]
Jungnickel D., Vanstone S.: On primitive polynomials over finite fields. J. Algebra 124, 337---353 (1989).
[121]
Lamken E., Vanstone S.: Balanced tournament designs and related topics. Discret. Math. 77, 159---176 (1989).
[122]
Menezes A., van Oorschot P., Vanstone S.: Some computational aspects of root finding in $$GF(q^{m})$$GF(qm). In: Symbolic and Algebraic Computation. Lecture Notes in Computer Science, vol. 358, pp. 259---270 (1989).
[123]
Phelps K., Stinson D., Vanstone S.: The existence of simple $$S_3(3,4, v)$$S3(3,4,v). Discret. Math. 77, 255---258 (1989).
[124]
Vanstone S., van Oorschot P.: An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers, Dordrecht (1989).
[125]
van Oorschot P., Vanstone S.: A geometric approach to root finding in $$GF(q^m)$$GF(qm). IEEE Trans. Inf. Theory 35, 444---453 (1989).
[126]
Agnew G., Mullin R., Vanstone S.: Improved digital signature scheme based on discrete exponentiation. Electron. Lett. 26, 1024---1025 (1990).
[127]
Agnew G., Mullin R., Vanstone, S.: A fast elliptic curve cryptosystem. In: Advances in Cryptology--EUROCRYPT '89. Lecture Notes in Computer Science, vol. 434, pp. 706---708 (1990).
[128]
Beth T., Vanstone S., Agnew G.: What one should know about public key algorithms--today! Securicom 90, 47---63 (1990).
[129]
Jungnickel D., Menezes A., Vanstone S.: On the number of self-dual bases of $$GF(q^m)$$GF(qm) over $$GF(q)$$GF(q). Proc. AMS 109, 23---29 (1990).
[130]
Lamken E., Vanstone S.: The existence of skew Howell designs of side $$2n$$2n and order $$2n+2$$2n+2. J. Comb. Theory Ser. A 54, 20---40 (1990).
[131]
Lamken E., Vanstone S.: Balanced tournament designs and resolvable $$(v,3,2)$$(v,3,2)-BIBDs. Discret. Math. 83, 37---47 (1990).
[132]
Lamken E., Vanstone S.: Balanced tournament designs with almost orthogonal resolutions. J. Aust. Math. Soc. Ser. A 49, 175---195 (1990).
[133]
Menezes A., Vanstone S.: The implementation of elliptic curve cryptosystems. In: Advances in Cryptology--AUSCRYPT '90. Lecture Notes in Computer Science, vol. 453, pp. 2---13 (1990).
[134]
Menezes A., Vanstone S.: Isomorphism classes of elliptic curves over finite fields of characteristic 2. Utilitas Math. 38, 135---154 (1990).
[135]
Vanstone S., van Oorschot P.: On splitting sets in block designs and finding roots of polynomials. Discret. Math. 84, 71---85 (1990).
[136]
van Oorschot P., Vanstone S.: Some geometric aspects of root finding in $$GF(q^m)$$GF(qm). Contemp. Math. 111, 303---307 (1990).
[137]
Agnew G., Mullin R., Onyszchuk I., Vanstone S.: An implementation for a fast public-key cryptosystem. J. Cryptol. 3, 63---79 (1991).
[138]
Boros E., Jungnickel D., Vanstone S.: The existence of non-trivial hyperfactorizations of $$K_{2n}$$K2n. Combinatorica 11, 9---15 (1991).
[139]
Jungnickel D., Vanstone S.: Triple systems in $$PG(2, q)$$PG(2,q). Discret. Math. 92, 131---135 (1991).
[140]
Jungnickel D., Mullin R., Vanstone S.: The spectrum of $$\alpha $$¿-resolvable block designs with block size 3. Discret. Math. 97, 269---277 (1991).
[141]
Lamken E., Rees R., Vanstone S.: Class-uniformly resolvable pairwise balances designs with block sizes 2 and 3. Discret. Math. 92, 197---209 (1991).
[142]
Menezes A., Vanstone S. (eds.): Advances in Cryptology--CRYPTO '90, Lecture Notes in Computer Science, vol. 537 (1991).
[143]
Phelps K., Vanstone S.: Isomorphism of strong starters in cyclic groups. J. Comb. Theory Ser. A 57, 287---293 (1991).
[144]
Beutelspacher A., Jungnickel D., van Oorschot P., Vanstone S.: Pair-splitting sets in $$AG(m, q)$$AG(m,q). SIAM J. Discret. Math. 5, 451---459 (1992).
[145]
Koyama K., Maurer U., Okamoto T., Vanstone S.: New public-key schemes based on elliptic curves over the ring $$Z_n$$Zn. In: Advances in Cryptology--CRYPTO '91. Lecture Notes in Computer Science, vol. 576, pp. 252---266 (1992).
[146]
Menezes A., van Oorschot P., Vanstone S.: Subgroup refinement algorithms for root finding in $$GF(q)$$GF(q). SIAM J. Comput. 21, 228---239 (1992).
[147]
Menezes A., Vanstone S.: A note on cyclic groups, finite fields, and the discrete logarithm problem. Appl. Algebra Eng. Commun. Comput. 3, 67---74 (1992).
[148]
Seberry J., McKay B., Vanstone S. (eds.): Selected papers in combinatorics--a volume dedicated to R.G. Stanton. In: Discrete Mathematics, vol. 92 (1991).
[149]
Tonchev V., Vanstone S.: On Kirkman triple systems of order 33. Discret. Math. 106---107, 493---496 (1992).
[150]
Agnew G., Mullin R., Vanstone S.: An implementation of elliptic curve cryptosystems over $$F_{2^{155}}$$F2155. IEEE J. Sel. Areas Commun. 11, 804---813 (1993).
[151]
Agnew G., Mullin R., Vanstone S.: Arithmetic operations in $$GF(2^m)$$GF(2m). J. Cryptol. 6, 3---13 (1993).
[152]
Agnew G., Mullin R., Vanstone S.: On the development of a fast elliptic curve cryptosystem. In: Advances in Cryptology--EUROCRYPT '92. Lecture Notes in Computer Science, vol. 658, pp. 482---487 (1993).
[153]
Blake I., Gao S., Menezes A., Mullin R., Vanstone S., Yaghoobian T.: Applications of Finite Fields. Kluwer Academic Publishers, Dordrecht (1993).
[154]
Furino S., Vanstone S.: Pairwise balanced designs with block sizes $$5t+1$$5t+1. In: Graphs, Matrices, and Designs. Lecture Notes in Pure and Applied Mathematics, vol. 139, pp. 147---170 (1993).
[155]
Gilbert W., Vanstone S.: Classical Algebra. Waterloo Mathematics Foundation, Waterloo (1993).
[156]
Harper G., Menezes A., Vanstone S.: Public-key cryptosystems with very small key lengths. In: Advances in Cryptology--EUROCRYPT '92. Lecture Notes in Computer Science, vol. 658, pp. 163---173 (1993).
[157]
Jungnickel D., Vanstone S. (eds.): Coding Theory, Design Theory, Group Theory. Wiley, New York (1993).
[158]
Lamken E., Vanstone S.: Existence results for doubly near resolvable $$(v,3,2)$$(v,3,2)-BIBDs. Discret. Math. 120, 135---148 (1993).
[159]
Menezes A., Okamoto T., Vanstone S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639---1646 (1993).
[160]
Menezes A., Vanstone S.: Elliptic curve cryptosystems and their implementation. J. Cryptol. 6, 209---224 (1993).
[161]
Menezes A., Vanstone S., Zuccherato R.: Counting points on elliptic curves over $$F_{2^m}$$F2m. Math. Comput. 60, 407---420 (1993).
[162]
Vanstone S., Stinson D., Schellenberg P., Rosa A., Rees R., Colbourn C., Carter M., Carter J.: Hanani triple systems. Israel J. Math. 83, 305---319 (1993).
[163]
Qu M., Vanstone S.: Factorizations in the elementary abelian $$p$$p-group and their cryptographic significance. J. Cryptol. 7, 201---2012 (1994).
[164]
Qu M., Vanstone S.: The knapsack problem in cryptography. Contemp. Math. 168, 291---308 (1994).
[165]
Vanstone S., Zuccherato R.: Using four-prime RSA in which some of the bits are specified. Electron. Lett. 30, 2118---2119 (1994).
[166]
Gao S., Vanstone S.: On orders of optimal normal basis generators. Math. Comput. 64, 1227---1233 (1995).
[167]
Jungnickel D., Vanstone S.: An application of coding theory to a problem in graphical enumeration. Arch. Math. 65, 461---464 (1995).
[168]
Lee T., Vanstone S.: Subspaces and polynomial factorization over finite fields. Appl. Algebra Eng. Commun. Comput. 6, 147---157 (1995).
[169]
Vanstone S., Zuccherato R.: Short RSA keys and their generation. J. Cryptol. 8, 101---114 (1995).
[170]
Jungnickel D., De Resmini M., Vanstone S.: Codes based on complete graphs. Des. Codes Cryptogr. 8, 159---165 (1996).
[171]
Jungnickel D., Vanstone S.: Graphical codes--a tutorial. Bull. ICA 18, 45---64 (1996).
[172]
Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996).
[173]
Wevrick D., Vanstone S.: Class-uniformly resolvable designs with block sizes 2 and 3. J. Comb. Des. 4, 177---202 (1996).
[174]
Jungnickel D., Vanstone S.: Graphical codes revisited. IEEE Trans. Inf. Theory 43, 136---146 (1997).
[175]
Jungnickel D., Vanstone S.: An application of difference sets to a problem concerning graphical codes. J. Stat. Plan. Inference 62, 43---46 (1997).
[176]
Vanstone S.: Elliptic curve cryptosystem--The answer to strong, fast public-key cryptography for securing constrained environments. Inf. Secur. Tech. Rep. 2, 78---87 (1997).
[177]
Vanstone S., Zuccherato R.: Elliptic curve cryptosystems using curves of smooth order over the ring $$\mathbb{Z}_n$$Zn. IEEE Trans. Inf. Theory 43, 1231---1237 (1997).
[178]
Müller V., Vanstone S., Zuccherato R.: Discrete logarithm based cryptosystems in quadratic function fields of characteristic 2. Des. Codes Cryptogr. 14, 159---178 (1998).
[179]
Jungnickel D., Vanstone S.: q-ary graphical codes. Discret. Math. 208---209, 375---386 (1999).
[180]
Jungnickel D., Vanstone S.: Ternary graphical codes. J. Comb. Math. Comb. Comput. 29, 17---31 (1999).
[181]
Gallant R., Lambert R., Vanstone S.: Improving the parallelized Pollard lambda search on anomalous binary curves. Math. Comput. 69, 1699---1705 (2000).
[182]
Koblitz N., Menezes A., Vanstone S.: The state of elliptic curve cryptography. Des. Codes Cryptogr. 19, 173---193 (2000).
[183]
Lam C., Shallit J., Vanstone S.: Worst-case analysis of an algorithm for computing the greatest common divisor of $$n$$n inputs. In: Coding Theory, Cryptography and Related Areas, pp. 156---166. Springer, Berlin (2000).
[184]
Gallant R., Lambert R., Vanstone S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Advances in Cryptology--CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 190---200 (2001).
[185]
Johnson D., Menezes A., Vanstone S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36---63 (2001).
[186]
Pintsov L., Vanstone S.: Postal revenue collection in the digital age. In: Financial Cryptography 2000. Lecture Notes in Computer Science, vol. 2001, pp. 105---120 (1962).
[187]
Brown D., Gallant R., Vanstone S.: Provably secure implicit certificate schemes. In: Financial Cryptography 2001. Lecture Notes in Computer Science, vol. 2339, pp. 156---165 (2002).
[188]
Lam C., Gong G., Vanstone S.: Message authentication codes with error correcting capabilities. In: Information and Communications Security--ICICS 2002. Lecture Notes in Computer Science, vol. 2513, pp. 354---366 (2002).
[189]
Qu M., Stinson D., Vanstone S.: Cryptanalysis of the Sakazaki-Okamoto-Mambo ID-based key distribution system over elliptic curves. In: Finite Fields with Applications in Coding Theory. Cryptography and Related Areas, pp. 263---269. Springer, Berlin (2002).
[190]
Antipa A., Brown D., Menezes A., Struik R., Vanstone S.: Validation of elliptic curve public keys. In: Proceedings of PKC 2003. Lecture Notes in Computer Science, vol. 2567, pp. 211---223 (2003).
[191]
Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An efficient protocol for authenticated key agreement. Des. Codes Cryptogr. 28, 119---134 (2003).
[192]
Vanstone S.: Next generation security for wireless: elliptic curve cryptography. Comput. Secur. 22, 412---415 (2003).
[193]
Gilbert W., Vanstone S.: Introduction to Mathematical Thinking: Algebra and Number Systems. Pearson, London (2004).
[194]
Hankerson D., Menezes A., Vanstone S.: Guide to Elliptic Curve Cryptography. Springer, Berlin (2004).
[195]
Antipa A., Brown D., Gallant R., Lambert R., Struik R., Vanstone S.: Accelerated verification of ECDSA signatures. In: Selected Areas in Cryptography--SAC 2005. Lecture Notes in Computer Science, vol. 3897, pp. 307---318 (2006).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Designs, Codes and Cryptography
Designs, Codes and Cryptography  Volume 77, Issue 2-3
December 2015
474 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 December 2015

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media