Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

User Interaction with the Matita Proof Assistant

Published: 01 August 2007 Publication History

Abstract

Matita is a new, document-centric, tactic-based interactive theorem prover. This paper focuses on some of the distinctive features of the user interaction with Matita, characterized mostly by the organization of the library as a searchable knowledge base, the emphasis on a high-quality notational rendering, and the complex interplay between syntax, presentation, and semantics.

References

[1]
1. Aitken, S.: Problem solving in interactive proof: a knowledge-modelling approach. In: European Conference on Artificial Intelligence (ECAI), pp. 335-339 (1996).
[2]
2. Aitken, S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an empirical study of user activity. J. Symb. Comput. 25(2), 263-284 (1998).
[3]
3. Asperti, A., Guidi, F., Padovani, L., Sacerdoti Coen, C., Schena, I.: Mathematical knowledge management in HELM. Ann. Math. Artif. Intell. 38(1-3), 27-46 (2003).
[4]
4. Asperti, A., Guidi, F., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: A content based mathematical search engine: Whelp. In: Post-proceedings of the Types 2004 International Conference. LNCS, vol. 3839, pp. 17-32 (2004).
[5]
5. Asperti, A., Padovani, L., Sacerdoti Coen, C., Schena, I.: Content-centric logical environments. Short presentation at the Fifteenth IEEE Symposium on Logic in Computer Science, 2000.
[6]
6. Asperti, A., Padovani, L., Sacerdoti Coen, C., Schena, I.: XML, stylesheets and the remathematization of formal content. In: Proceedings of EXTREME Markup Languages, 2001.
[7]
7. Asperti, A., Wegner, B.: An approach to machine-understandable representation of the mathematical information in digital documents. In: Electronic Information and Communication in Mathematics. LNCS, vol. 2730, pp. 14-23 (2003).
[8]
8. Aspinall, D.: Proof general: A generic tool for proof development. In: Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2000. LNCS, vol. 1785 (2000).
[9]
9. Bancerek, G.: On the structure of Mizar types. Electron. Notes Theor. Comput. Sci. 85(7), (2003).
[10]
10. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Proceedings of the Mathematical Knowledge 2003. LNCS, vol. 2594 (2003).
[11]
11. Bertot, Y.: The CtCoq System: design and architecture. Form. Asp. Comput. 11, 225-243 (1999).
[12]
12. Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Symposium on Theoretical Aspects Computer Software (STACS). LNCS, vol. 789 (1994).
[13]
13. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: towards computer-aided mathematical theory exploration. Journal of Applied Logic. 4(4), 470-504 (December 2006).
[14]
14. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer, Berlin Heidelberg New York (2002).
[15]
15. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently typed records. Fundam. Inform. 65(1-2), 113-134 (2005).
[16]
16. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive coq repository at Nijmegen. In: MKM, pp. 88-103 (2004).
[17]
17. Gordon, M. J. C., Milner, R., Wadsworth, C. P.: Edinburgh LCF: a mechanised logic of computation. In: LNCS, vol. 78 (1979).
[18]
18. Hutter, D.: Towards a generic management of change. In: Workshop on Computer-supported Mathematical Theory Development, IJCAR (2004).
[19]
19. Kamareddine, F., Nederpelt, R.: A Refinement of de Bruijns formal language of mathematics. J. Logic, Lang. Inf. 13(3), 287-340 (2004).
[20]
20. Luo, Z.: Coercive subtyping. J. Log. Comput. 9(1), 105-130 (1999).
[21]
21. McCasland, R. L., Bundy, A., Smith, P. F.: Ascertaining mathematical theorems. Electron. Notes Theor. Comput. Sci. 151(1), 21-38 (2006).
[22]
22. McCune, W., Wos, L.: Otter-The CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211-220 (1997).
[23]
23. Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. vol. 1, pp. 371-443. Elsevier and MIT Press. ISBN-0-262-18223-8 (2001).
[24]
24. Obua, S.: Conservative overloading in higher-order logic. In: Rewriting Techniques and Applications. LNCS, vol. 4098, pp. 212-226 (July 2006).
[25]
25. Padovani, L.: MathML formatting. PhD thesis, University of Bologna (2003).
[26]
26. Padovani, L., Zacchiroli, S.: From notation to semantics: there and back again. In: Proceedings of Mathematical Knowledge Management 2006. Lectures Notes in Artificial Intelligence, vol. 3119, pp. 194-207 (2006).
[27]
27. Sacerdoti Coen, C.: From proof-assistants to distributed libraries of mathematics: tips and pitfalls. In: Proceedings of the Mathematical Knowledge Management 2003. LNCS, vol. 2594, pp. 30-44 (2003).
[28]
28. Sacerdoti Coen, C.: Mathematical knowledge management and interactive theorem proving. PhD thesis, University of Bologna (2004).
[29]
29. Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: Tinycals: step by step tacticals. In: Proceedings of User Interface for Theorem Provers. ENTCS 174(2), pp. 125-142 ISSN: 1571-0661 (May 2007).
[30]
30. Sacerdoti Coen, C., Zacchiroli, S.: Efficient ambiguous parsing of mathematical formulae. In: Proceedings of Mathematical Knowledge Management 2004. LNCS, vol. 3119, pp. 347-362 (2004).
[31]
31. Shneiderman, B.: Direct manipulation for comprehensible, predictable and controllable user interfaces. In: Proceedings of the 2nd International Conference on Intelligent User Interfaces. New York, NY, pp. 33-39 (1997).
[32]
32. Sutcliffe, G.: The CADE-20 automated theorem proving competition. AI Commun. 19(2), 173-181 (2006).
[33]
33. Syme, D.: A new interface for HOL - ideas, issues and implementation. In: Proceedings of Higher-order Logic Theorem Proving and its Applications. 8th International Workshop, TPHOLs 1995. LNCS, vol. 971, pp. 324-339 (1995).
[34]
34. Takahashi, K., Hagiya, M.: Proving as editing HOL tactics. Form. Asp. Comput. 11(3), 343-357 (1999).
[35]
35. Wenzel, M.: Type classes and overloading in higher-order logic. In: TPHOLs, pp. 307-322 (1997).
[36]
36. Werner, B.: Une théorie des constructions inductives. PhD thesis, Université Paris VII (1994).
[37]
37. Zacchiroli, S.: User interaction widgets for interactive theorem proving. PhD thesis, University of Bologna (2007).

Cited By

View all
  • (2023)Prototyping logic-based AI services with LogicUSProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i13.27083(16473-16475)Online publication date: 7-Feb-2023
  • (2022)Certifying Algorithms and Relevant Properties of Reversible Primitive Permutations with LeanReversible Computation10.1007/978-3-031-09005-9_8(111-127)Online publication date: 5-Jul-2022
  • (2018)The pedagogical model of SIAL: an adaptive and open-ended intelligent tutoring system for first order logicProceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education10.1145/3197091.3197100(21-26)Online publication date: 2-Jul-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Automated Reasoning
Journal of Automated Reasoning  Volume 39, Issue 2
August 2007
136 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 August 2007

Author Tags

  1. Authoring
  2. Digital libraries
  3. Interactive theorem proving
  4. Mathematical knowledge management
  5. Proof assistant
  6. XML

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Prototyping logic-based AI services with LogicUSProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i13.27083(16473-16475)Online publication date: 7-Feb-2023
  • (2022)Certifying Algorithms and Relevant Properties of Reversible Primitive Permutations with LeanReversible Computation10.1007/978-3-031-09005-9_8(111-127)Online publication date: 5-Jul-2022
  • (2018)The pedagogical model of SIAL: an adaptive and open-ended intelligent tutoring system for first order logicProceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education10.1145/3197091.3197100(21-26)Online publication date: 2-Jul-2018
  • (2015)Towards semantic mathematical editingJournal of Symbolic Computation10.1016/j.jsc.2014.09.04071:C(1-46)Online publication date: 1-Nov-2015
  • (2015)Adding a graphical output to a theorem proverComputer Applications in Engineering Education10.1002/cae.2165423:6(837-845)Online publication date: 1-Nov-2015
  • (2014)LemACM SIGPLAN Notices10.1145/2692915.262814349:9(175-188)Online publication date: 19-Aug-2014
  • (2014)LemProceedings of the 19th ACM SIGPLAN international conference on Functional programming10.1145/2628136.2628143(175-188)Online publication date: 19-Aug-2014
  • (2013)Ontologies and languages for representing mathematical knowledge on the Semantic WebSemantic Web10.5555/2590215.25902174:2(119-158)Online publication date: 1-Apr-2013
  • (2013)SLIACM Inroads10.1145/2465085.24651014:2(53-56)Online publication date: 1-Jun-2013
  • (2012)Higher-order aspects and context in SUMOWeb Semantics: Science, Services and Agents on the World Wide Web10.5555/2773565.277365912:C(104-117)Online publication date: 1-Apr-2012
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media