Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Stochastic circuit breaker network model for bipolar resistance switching memories

Published: 01 December 2017 Publication History

Abstract

We present a stochastic model for resistance switching devices in which a square grid of resistor breakers plays the role of the insulator switching layer. The probability of breaker switching between two fixed resistance values, $$R_\mathrm{OFF}$$ROFF and $$R_\mathrm{ON}$$RON, is determined by the corresponding voltage drop and thermal Joule heating. The breaker switching produces the overall device resistance change. Salient features of all the switching operations of bipolar resistance switching memories (RRAMs) are reproduced by the model and compared to a prototypical $$\hbox {HfO}_2$$HfO2-based RRAM device. In particular, the need of a forming process that leads a fresh highly insulating device to a low resistance state (LRS) is captured by the model. Moreover, the model is able to reproduce the RESET process, which partially restores the insulating state through a gradual resistance transition as a function of the applied voltage and the abrupt nature of the SET process that restores the LRS. Furthermore, the multilevel capacity of a typical RRAM device obtained by tuning RESET voltage and SET compliance current is reproduced. The manuscript analyses the peculiar ingredients of the model and their influence on the simulated current---voltage curves and, in addition, provides a detailed description of the mechanisms that connect the switching of the single breakers and that of the overall device.

References

[1]
Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502 (2012).
[2]
Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-Oxide RRAM. Proc. IEEE 100(6), 1951 (2012).
[3]
Chen, H.Y., Brivio, S., Chang, C.C., Frascaroli, J., Hou, T.H., Hudec, B., Liu, M., Lv, H., Molas, G., Sohn, J., Spiga, S., Teja, V.M., Vianello, E., Wong, H.S.P.: Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication. J. Electroceramics (2017).
[4]
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765 (2011).
[5]
Covi, E., Brivio, S., Frascaroli, J., Fanciulli, M., Spiga, S.: (Invited) Analog HfO2-RRAM switches for neural networks. ECS Trans. 75(32), 85 (2017).
[6]
Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 482 (2016).
[7]
Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G., Likharev, K.K., Strukov, D.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nat. Lett. 521, 61 (2015).
[8]
Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., DeSalvo, B., Perniola, L.: HfO$$_{\text{2 }}$$2-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 62(8), 2494 (2015).
[9]
Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Steward, D.R., Williams, R.S.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873 (2010).
[10]
Rosezin, R., Linn, E., Kügeler, C., Bruchhaus, R., Waser, R.: Crossbar logic using bipolar and complementary resistive switches. IEEE Electron Device Lett. 32(6), 710 (2011).
[11]
Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022 (2015).
[12]
Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Zeng, L., Gao, B., Du, G., Zhang, X., Kang, J.F.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Devices 60(12), 4090 (2013).
[13]
Piccolboni, G, Molas, G., Portal, J.M., Coquand, R., Bocquet, M., Garbin, D., Vianello, E., Carabasse, C., Delaye, V., Pellissier, C., Magis, T., Cagli, C., Gely, M., Cueto, O., Deleruyelle, D., Ghibaudo, G., Salvo, B.D., Perniola, L.: Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications. In: IEEE International Electron Devices Meeting (IEDM), pp. 17.2.1---17.2.4. (2015).
[14]
Degraeve, R., Fantini, A., Raghavan, N., Goux, L., Clima, S., Govoreanu, B., Belmonte, A., Linten, D., Jurczak, M.: Causes and consequences of the stochastic aspect of filamentary RRAM. Microelectron. Eng. 147, 171 (2015).
[15]
Balatti, S., Ambrogio, S., Carboni, R., Milo, V., Wang, Z., Calderoni, A., Ramaswamy, N., Ielmini, D.: Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63(5), 2029 (2016).
[16]
Bill, J., Legenstein, R.: A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Front. Neurosci. 8, 412 (2014).
[17]
Gao, B., Liu, L., Kang, J.: Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide. Prog. Nat. Sci. Mater. Int. 25(1), 47 (2015).
[18]
Padovani, A., Larcher, L., Pirrotta, O., Vandelli, L., Bersuker, G.: Microscopic modeling of HfO$$_x$$x RRAM operations: from forming to switching. IEEE Trans. Electron Devices 62(6), 1998 (2015).
[19]
Abbaspour, E., Menzel, S., Jungemann, C.: The role of the interface reactions in the electroforming of redox-based resistive switching devices using KMC simulations. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 293---296.
[20]
Brivio, S., Frascaroli, J., Spiga, S.: Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO$$_2$$2/TiN devices. Appl. Phys. Lett. 107(2), 023504 (2015).
[21]
Frascaroli, J., Brivio, S., Ferrarese Lupi, F., Seguini, G., Boarino, L., Perego, M., Spiga, S.: Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano 9(3), 2518 (2015).
[22]
Bersuker, G., Gilmer, D., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Schluger, A., Iglesias, V., Porti, M., Nafría, M.: Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110(12), 124518 (2011).
[23]
Brivio, S., Tallarida, G., Cianci, E., Spiga, S.: Formation and disruption of conductive filaments in a HfO$$_2$$2/TiN structure. Nanotechnology 25(38), 385705 (2014).
[24]
Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309 (2011).
[25]
Brivio, S., Tallarida, G., Perego, D., Franz, S., Deleruyelle, D., Muller, C., Spiga, S.: Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012).
[26]
Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013).
[27]
Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M.: S. SpigaExperimental study of gradual/abrupt dynamics of HfO2-based memristive devices. Appl. Phys. Lett. 109(13), 133504 (2016).
[28]
Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.W., Jung, C.U., Seo, S., Lee, M.J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008).
[29]
Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D.W., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009).
[30]
Liu, C., Chae, S.C., Lee, J.S., Chang, S.H., Lee, S.B., Kim, D.W., Jung, C.U., Seo, S., Ahn, S.E., Kahng, B., Noh, T.W.: Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels. J. Phys. D Appl. Phys. 42(1), 015506 (2009).
[31]
Kim, K., Yoon, S.J., Choi, W.Y.: Dual random circuit breaker network model with equivalent thermal circuit network. Appl. Phys. Express 7(2), 024203 (2014).
[32]
Xing, J., Li, Q., Tian, X., Li, Z., Xu, H.: A memristor random circuit breaker model accounting for stimulus thermal accumulation. IEICE Electron. Express advpub (2016).
[33]
Lee, S.B., Lee, J.S., Chang, S.H., Yoo, H.K., Kang, B.S., Kahng, B., Lee, M.J., Kim, C.J., Noh, T.W.: Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching. Appl. Phys. Lett. 98(3), 033502 (2011).
[34]
Li, C., Gao, B., Yao, Y., Guan, X., Shen, X., Wang, Y., Huang, P., Liu, L., Liu, X., Li, J., Gu, C., Kang, J., Yu, R.: Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. (2017).
[35]
Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), IEEE International, 2011, pp. 17.3.1---17.3.4 (2011).
[36]
Yu, S., Chen, Y.Y., Guan, X., Wong, H.S.P., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012).
[37]
Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Gradual set dynamics in $$\text{HfO }_2$$HfO2-based memristor driven by sub-threshold voltage pulses. In Proceedings of IEEE International Conference on Memristive Systems (MEMRISYS), pp. 1---2 (2015).
[38]
Brivio, S., Frascaroli, J., Spiga, S.: Role of Al doping in the filament disruption in $$\text{ HfO }_2$$HfO2 resistance switches. Nanotechnology (2017).
[39]
Frascaroli, J., Volpe, F.G., Brivio, S., Spiga, S.: Effect of Al doping on the retention behavior of $$\text{ HfO }_2$$HfO2 resistive switching memories. Microelectron. Eng. 147, 104 (2015).
[40]
Spiga, S., Lamperti, A., Wiemer, C., Perego, M., Cianci, E., Tallarida, G., Lu, H., Alia, M., Volpe, F., Fanciulli, M.: Resistance switching in amorphous and crystalline binary oxides grown by electron beam evaporation and atomic layer deposition. Microelectron. Eng. 85(12), 2414 (2008).
[41]
Spiga, S., Lamperti, A., Cianci, E., Volpe, F.G., Fanciulli, M.: Transition metal binary oxides for ReRAM applications. ECS Trans. 25(6), 411 (2009).
[42]
Knudsen, H.A., Fazekas, S.: Robust algorithm for random resistor networks using hierarchical domain structure. J. Comput. Phys. 211(2), 700 (2006).
[43]
Ferragut, R., Dupasquier, A., Brivio, S., Bertacco, R., Egger, W.: Study of defects in an electroresistive Au/La$$_{2/3}$$2/3Sr$$_{1/3}$$1/3MnO$$_3$$3/SrTiO$$_3$$3(001) heterostructure by positron annihilation. J. Appl. Phys. 110, 053511 (2011).
[44]
Traoré, B., Baise, P., Vianello, E., Grampiex, H., Bonnevialle, A., Jalaguier, E., Molas, G., Jeannot, S., Perniola, L., De Salvo, B., Nishi, Y.: Microscopic understanding of the low resistance state retention in HfO$$_2$$2 and HfAlO based RRAM. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), p. 21.5.1 (2013).
[45]
Zhao, L., Ryu, SW., Hazeghi, A., Duncan, D., Magyari-Köpe, B., Nishi, Y.: Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics: a systematic study. In: 2013 Symposium on VLSI Technology (VLSIT), p. T106 (2013)
[46]
Zhang, H., Gao, B., Sun, B., Chen, G., Zeng, L., Liu, L., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Ionic doping effect in ZrO$$_2$$2 resistive switching memory. Appl. Phys. Lett. 96(12), 123502 (2010).
[47]
Wu, Y., Yu, S., Wong, H.S., Chen, Y.S., Lee, H.Y., Wang, S.M., . Gu, P.Y., Chen, F., Tsai, M.J.: Circuit implementation of spike time dependent plasticity (STDP) for artificial synapse. In: Proceedings of IEEE International Memory Workshop (IMW), pp. 1---4 (2012).
[48]
Park, J., Woo, J., Prakash, A., Lee, S., Lim, S., Hwang, H.: Improved reset breakdown strength in a HfOx-based resistive memory by introducing RuOx oxygen diffusion barrier. AIP Adv. 26(5), 055114 (2016).
[49]
Russo, U., Ielmini, D., Cagli, C., Lacaita, A.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193 (2009).
[50]
Celano, U., Goux, L., Belmonte, A., Giammaria, G., Opsomer, K., Detavernier, C., Richard, O., Bender, H., Irrera, F., Jurczak, M., Vandervorst, W.: Progressive versus abrupt reset behavior in conductive bridging devices: A C-AFM tomography study. In: IEEE International Electron Devices Meeting, pp. 14.1.1---14.1.4 (2014).
[51]
Jana, D., Roy, S., Panja, R., Dutta, M., Rahaman, S.Z., Mahapatra, R., Maikap, S.: Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 10, 1 (2015).
[52]
Traoré, B., Blaise, P., Vianello, E., Perniola, L., Salvo, B.D., Nishi, Y.: HfO2-Based RRAM: Electrode Effects, Ti/HfO2 Interface, Charge Injection, and Oxygen (O) Defects Diffusion Through Experiment and Ab Initio Calculations. IEEE Trans. Electron Devices 63(1), 360 (2016).
[53]
Ambrogio, S., Balatti, S., Gilmes, D., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378 (2014).
[54]
Marchewka, A., Roesgen, B., Skaja, K., Du, H., Jia, C.L., Mayer, J., Rana, V., Waser, R., Menzel, S.: Nanoionic resistive switching memories: on the physical nature of the dynamic reset process. Adv. Electron. Mater. 2(1), 1500233 (2016).
[55]
Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., Lu, W.D.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203 (2015).
[56]
Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO$$_{\text{2 }}$$2 RRAM devices. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 17.5.1---17.5.4 (2011).
[57]
Menzel, S., Böttger, U., Wimmer, M., Salinga, M.: Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306 (2015).

Cited By

View all
  • (2019)Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMsLarge-Scale Scientific Computing10.1007/978-3-030-41032-2_49(429-437)Online publication date: 10-Jun-2019

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Electronics
Journal of Computational Electronics  Volume 16, Issue 4
December 2017
275 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 2017

Author Tags

  1. Memristor
  2. RRAM
  3. Random circuit breaker
  4. ReRAM
  5. Stochastic model

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Kinetic Monte Carlo Analysis of the Operation and Reliability of Oxide Based RRAMsLarge-Scale Scientific Computing10.1007/978-3-030-41032-2_49(429-437)Online publication date: 10-Jun-2019

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media