Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Design of Adaptive Robot Control System Using Recurrent Neural Network

Published: 01 November 2005 Publication History

Abstract

The use of a new Recurrent Neural Network (RNN) for controlling a robot manipulator is presented in this paper. The RNN is a modification of Elman network. In order to solve load uncertainties, a fast-load adaptive identification is also employed in a control system. The weight parameters of the network are updated using the standard Back-Propagation (BP) learning algorithm. The proposed control system is consisted of a NN controller, fast-load adaptation and PID-Robust controller. A general feedforward neural network (FNN) and a Diagonal Recurrent Network (DRN) are utilised for comparison with the proposed RNN. A two-link planar robot manipulator is used to evaluate and compare performance of the proposed NN and the control scheme. The convergence and accuracy of the proposed control scheme is proved.

References

[1]
1. Psaltis, D., Sideris, A., and Yamamura, A.: A multilayered neural network controller, IEEE Control Syst. Mag. (1989), 17-21.
[2]
2. Narendra, K. S. and Parthasarathy, K.: Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Netw. 1 (1990), 4-27
[3]
3. Pineda, F. J.: Dynamics and architecture for neural computation, J. Complex. 4 (1988), 216-245
[4]
4. Pearlmutter, B. A.: Learning state space trajectories in recurrent neural networks, Neural Comput. 1 (1989), 263-269.
[5]
5. Khemaissia, S. and Morris, A. S.: Neuro-adaptive control of robot manipulators, Robotica 11 (1993), 456-473.
[6]
6. Miyamoto, H., Kawato, M., Setoyama, T., and Suzuki, R.: Feedback-error-learning neural networks for trajectory control of a robot manipulator, Neural Netw. 1 (1988), 251-265.
[7]
7. Miller, W. T., Glanz, F. H., and Kraft, L. G.: CMAC: An associative neural network alternative to backpropagtion, Proc. IEEE 78 (1990), 1561-1567.
[8]
8. Kawato, M., Uno, Y., Isabe, M., and Suzuki, R.: Hierarchical neural network model for voluntary movement with application to robotics, IEEE Control Syst. Mag. (1988), 8-16.
[9]
9. Katic, D. M. and Vukobratovic, M. K.: Highly efficient robot dynamics learning by decomposed connectionist feedforward control structure, IEEE Trans. Syst. Man Cybern. 25(1) (1995), 145-158.
[10]
10. Ishiguro, A., Furuhashii, T., Okuma, S., and Uchikawa, Y.: A neural network compensator for uncertainties of robot manipulator, IEEE Trans. Ind. Electron. 39 (1992), 61-66.
[11]
11. Jung, S. and Hsia, T. C.: New neural network control technique for non-linear based robot manipulator control, IEEE Int. Conf. Syst., Man Cybernetics, Canada 3 (1995), 2928-2933.
[12]
12. Li, Q., Poo, A. N., and Ang, M.: An enhanced computed-torque control scheme for robot manipulators with a neuro-compensator, IEEE Int. Conf. Syst., Man Cybernetics, Canada 1 (1995), 56-60.
[13]
13. Elman, J. L.: Finding structure in time, Cogn. Sci. 14 (1990), 179-211.
[14]
14. Yildirim, S.: Neural network controller for cooperating robots, Electron. Lett. 37(22) (2001), 1351-1352.
[15]
15. Craig, J. J., Hsu P., and Sastry, S. S.: Adaptive control of mechanical manipulators, Int. J. Rob. Res. 6(6) (1987), 16-28.
[16]
16. Ku, C. C. and Lee, K. Y.: Diagonal recurrent neural networks for dynamic systems control, IEEE Trans. Neural Netw. 6 (1995), 144-156.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Intelligent and Robotic Systems
Journal of Intelligent and Robotic Systems  Volume 44, Issue 3
November 2005
88 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 November 2005

Author Tags

  1. PID-robust controller
  2. back-propagation
  3. diagonal recurrent network
  4. recurrent neural network
  5. robot manipulator

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media