Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Multi-channel Fusion Based Adaptive Gait Trajectory Generation Using Wearable Sensors

Published: 01 June 2017 Publication History

Abstract

This paper presents a method to regenerate lower limb joint angle trajectories during gait cycle by judging human intention using wearable sensor system. Myoelectric signals from user are used to detect the intention of gait initiation and gait phases. Multi-channel redundant fusion technique is implemented to obtain a robust stride time and gait phase calculation algorithm. Joint trajectories corresponding to particular gait events and phases are regenerated using a Radial basis neural network. The network is trained with joint angle data measured by Inertial Measurement Unit (IMU) from users with varying anthropomorphic features. Generated trajectory is adaptive to anthropomorphic as well as gait velocity variation. Contribution of this paper is in development of a wearable sensor system, multi-channel redundant fusion to calculate stride time and an adaptive gait trajectory generation algorithm. The proposed method of trajectory generation is used to regenerate lower limb joint motion in sagittal plane for wearable robotic devices like prosthesis and active lower limb exoskeleton.

References

[1]
Tingfang, Y., Marco, C., Calogero, O., Nicola, V.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120---136 (2015)
[2]
Slavka, V., Patrik, K., Marcel, J.: Wearable lower limb robotics: a review. Biocybernatics Biomed. Eng. 3, 96---105 (2013)
[3]
Atushi, T., Ryota, K., Yasuhisa, H., Yoshiyuki, S.: Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv. Robot. 24, 1615---1638 (2010)
[4]
Zoss, A., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128---138 (2006)
[5]
Tommaso, L., Maria, C., Sunil, A.: Powered hip exoskeletons can reduce the users hip and ankle muscle activations during walking. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 938---948 (2013)
[6]
Jan, V., Rik, K., Edsko, H., Ralf, E., Edwin, V., Herman, V.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379---386 (2007)
[7]
Vallery, H., Van, A., Buss, M., Herman, V.: Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 23---30 (2009)
[8]
Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intention based walking support for paraplegia patients with robot suit HAL. Adv. Robot. 21(12), 1441---1469 (2007)
[9]
Subhash, M.: Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors J. 15(3), 13---21 (2015)
[10]
Edwards, J.: Wireless sensors relay medical insight to patients and caregivers {special reports}. IEEE Signal Process. Mag. 29(3), 8---12 (2012)
[11]
Malhi, K., Subhash, M., Schnepper, J., Haefke, M., Ewald, H.: A Zigbee-based wearable physiological parameters monitoring system. IEEE Sensors J. 12(3), 423---430 (2012)
[12]
Weijun, T., Tao, L., Rencheng, Z., Hutian, F.: Gait analysis using wearable sensors. Sensors J. 12, 2255---2283 (2012).
[13]
Shyamal, P., Hyung, P., Paolo, B., Leighton, C., Mary, R.: A review of wearable sensors and systems with application in rehabilitation. J. Neuro Eng. Rehabil. 9(21) (2012). http://www.jneuroengrehab.com/content/9/1/21
[14]
Silva, J., Heim, W., Chau, T.: A self-contained, mechanomyography-driven externally powered prosthesis. Arch. Phys. Med. Rehabil. 86(10), 2066---2070 (2005)
[15]
Fukuda, O., Tsuji, T., Ohtsuka, A., Kaneko, M.: A EMG-based human-robot interface for rehabilitation aid. IEEE Int. Conf. Robot. Autom. 4, 3492---3497 (1998)
[16]
Benedetti, M., Bonato, P., Catani, F., Knaflitz, M., Marcacci, M., Simoncini, L.: Myoelectric activation pattern during gait in total knee replacement: relationship with kinematics, kinetics and clinical outcome. IEEE Trans. Rehabil. Eng. 7, 140---149 (1999)
[17]
Wege, A., Zimmermann, A.: Electromyography sensor based control for a hand exoskeleton. IEEE International Conference on Robotics and Biomimetics. pp 1470 ¿1475 (2007)
[18]
Mulas, M., Folgheraiter, M., Gini, G.: An EMG-controlled exoskeleton for hand rehabilitation. International Conference on Rehabilitation Robotics. pp 371 ¿374 (2005)
[19]
Abdul Hadi, R., Aladin, Z., Rezaul, B., Yufridin, W.: Foot plantar pressure measurement system: a review. Sensors 12, 9884---9912 (2012).
[20]
Domen, N., Peter, R., Stefano, M., Maria De, R., Marco, D., Janez, P., Tadej, B., Tommaso, L., Nicola, V., Maria, C., Marko, M.: Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 35, 1713---1720 (2013)
[21]
Laiyin, Q., Hao, M., Wei-Hsin, L.: Insole plantar pressure systems in the gait analysis of post-stroke rehabilitation proceeding of the 2015 IEEE International Conference on Information and Automation. Lijiang, China (2015)
[22]
Morris, S., Paradiso, J.: Shoe-integrated sensor system for wireless gait analysis and real-time feedback gait analysis and real-time feedback, Proceedings of 2nd Joint EMBS/BMES Conference, 2468---2469 (2002)
[23]
Mueller, M., Strube, M.: Generalizability of in-shoe peak pressure measures using the F-scan system. Clin. Biomech. 11(3), 159---164 (1996)
[24]
Ramanathan, A., Kiran, P., Arnold, G., Wang, W., Abboud, R.: Repeatability of the Pedar-X in-shoe pressure measuring system. Foot Ankle Surg. 16(2), 70---73 (2010)
[25]
Thomas, S., Jrg, R., Thomas, S.: IMU-Based joint angle measurement for gait analysis. Sensors 14, 6891---6909 (2014).
[26]
Carlos, C., Ariel, B., Luis, R., Melisa, F., Alfonso, S., Anselmo, F.: Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics Roma Italy (2012)
[27]
Vincent, B., Claudia, M., Philippe, F., Aurelio, C.: Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. IEEE Trans. Biomed. Eng. 60(7), 1920---1926 (2013)
[28]
Ju-Won, L., Gun-Ki, L.: Gait angle prediction for lower limb orthotics and prostheses using an EMG signal and neural networks. Int. J. Control. Autom. Syst. 3(2), 152---158 (2005)
[29]
Wang, L., Buchanan, T.: Prediction of joint moments using a neural network mode of activations from EMG signals. IEEE Trans. Rehabilitation Eng. 10(1), 30---37 (2002)
[30]
Genci, C., Yasuo, N., Leonard, B., Kazuhitsa, M.: Real time gait generation for autonomous humanoid robots: A case study for walking. Robotics and Autonomous Systems 42: 107 ¿116 (2013)
[31]
Muhammad, A., Rushdi, A.: Partially-redundant systems: Examples, reliability, and life expectancy. IMACST. 1(1) (2010)
[32]
Biswas, K., Mazumder, O., Kundu, A.: Multichannel fused EMG based biofeedback system with virtual reality for gait rehabilitation. IEEE Proceedings of 4th International Conference on Intelligent Human Computer Interaction, India (2012)
[33]
Kundu, A., Mazumder, O., Chattaraj, R., Bhaumik, S., Lenka, P.: Trajectory generation for myoelectrically controlled lower limb active knee exoskeleton. Seventh International Conference on Contemporary Computing, India (2014)
[34]
Vaughan, C., Davis, B., Connar, J.: Dynamics of human gait, 2nd edition, Kiboho publishers, Capetown, South Africa
[35]
Inaba Rubber Co Ltd. www.inaba-rubber.co.jp/en
[36]
www.sparkfun.com/products/10736
[37]
MATLAB. www.mathwork.com

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Intelligent and Robotic Systems
Journal of Intelligent and Robotic Systems  Volume 86, Issue 3-4
June 2017
358 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2017

Author Tags

  1. Adaptive Gait Trajectory
  2. Exoskeleton
  3. Redundant Fusion
  4. Stride Time
  5. Surface Electromyography

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media